A frog is crossing a river. The river is divided into x units and at each unit there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.

Given a list of stones' positions (in units) in sorted ascending order, determine if the frog is able to cross the river by landing on the last stone. Initially, the frog is on the first stone and assume the first jump must be 1 unit.

If the frog's last jump was k units, then its next jump must be either k - 1, k, or k + 1 units. Note that the frog can only jump in the forward direction.

Note:

The number of stones is ≥ 2 and is < 1,100.
Each stone's position will be a non-negative integer < 231.
The first stone's position is always 0.
Example 1: [0,1,3,5,6,8,12,17] There are a total of 8 stones.
The first stone at the 0th unit, second stone at the 1st unit,
third stone at the 3rd unit, and so on...
The last stone at the 17th unit. Return true. The frog can jump to the last stone by jumping
1 unit to the 2nd stone, then 2 units to the 3rd stone, then
2 units to the 4th stone, then 3 units to the 6th stone,
4 units to the 7th stone, and 5 units to the 8th stone.
Example 2: [0,1,2,3,4,8,9,11] Return false. There is no way to jump to the last stone as
the gap between the 5th and 6th stone is too large.

Solution 1: Backtracking, but will TLE

 public class Solution {
public boolean canCross(int[] stones) {
HashSet<Integer> stonePos = new HashSet<Integer>();
for (int stone : stones) {
stonePos.add(stone);
}
return helper(stonePos, 0, 0, stones[stones.length-1]);
} public boolean helper(HashSet<Integer> stonePos, int pos, int jump, int last) {
if (pos == last) return true;
for (int diff=-1; diff<=1; diff++) {
int nextJump = jump + diff;
if (nextJump <= 0) continue;
if (stonePos.contains(pos+nextJump)) {
if (helper(stonePos, pos+nextJump, nextJump, last))
return true;
}
}
return false;
}
}

Better Solution: DP (refer to https://discuss.leetcode.com/topic/59903/very-easy-to-understand-java-solution-with-explanations)

Use map to represent a mapping from the stone (not index) to the steps that can be taken from this stone.

so this will be

[0,1,3,5,6,8,12,17]

{17=[], 0=[1], 1=[1, 2], 3=[1, 2, 3], 5=[1, 2, 3], 6=[1, 2, 3, 4], 8=[1, 2, 3, 4], 12=[3, 4, 5]}

Notice that no need to calculate the last stone.

On each step, we look if any other stone can be reached from it, if so, we update that stone's steps by adding step, step + 1, step - 1. If we can reach the final stone, we return true. No need to calculate to the last stone.

 public class Solution {
public boolean canCross(int[] stones) {
if (stones.length <= 1) return true;
HashMap<Integer, HashSet<Integer>> map = new HashMap<Integer, HashSet<Integer>>();
for (int stonePos : stones) {
map.put(stonePos, new HashSet<Integer>());
}
map.get(0).add(1);
for (int i=0; i<stones.length-1; i++) {
int stonePos = stones[i];
HashSet<Integer> steps = map.get(stonePos);
for (int step : steps) {
int reach = stonePos + step;
if (reach == stones[stones.length-1]) return true;
HashSet<Integer> set = map.get(reach);
if (set != null) {
set.add(step);
set.add(step+1);
if (step-1 > 0) set.add(step-1);
}
}
}
return false;
}
}

下面我自己写的这个DP思路可能更简单易写一点:维护一个HashMap<int pos, HashSet<Integer> set>, pos是stones数组里第i个石头,set存该石头possible的next jump。所以initialize: map.get(0).add(1).  这个算法没有上面那个快,但是更容易想清楚

 public class Solution {
public boolean canCross(int[] stones) {
HashMap<Integer, HashSet<Integer>> map = new HashMap<>();
map.put(0, new HashSet<Integer>());
map.get(0).add(1); for (int i=1; i<stones.length; i++) {
map.put(i, new HashSet<Integer>());
for (int j=0; j<i; j++) {
int dis = stones[i] - stones[j];
HashSet<Integer> setj = map.get(j); //j's possible next jumps
if (setj.contains(dis)) {
if (dis - 1 > 0) map.get(i).add(dis-1);
map.get(i).add(dis);
map.get(i).add(dis+1);
}
}
} return map.get(stones.length-1).size() != 0;
}
}

Leetcode: Frog Jump的更多相关文章

  1. [LeetCode] Frog Jump 青蛙过河

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  2. Java for LeetCode 055 Jump Game

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  3. [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  4. [leetcode]45. Jump Game II青蛙跳(跳到终点最小步数)

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  5. [LeetCode] 45. Jump Game II 跳跃游戏 II

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  6. [LeetCode] 403. Frog Jump 青蛙跳

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  7. [leetcode] 403. Frog Jump

    https://leetcode.com/contest/5/problems/frog-jump/ 这个题目,还是有套路的,之前做过一道题,好像是贪心性质,就是每次可以跳多远,最后问能不能跳到最右边 ...

  8. [leetcode]403. Frog Jump青蛙过河

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  9. 第十七周 Leetcode 403. Frog Jump(HARD) 线性dp

    leetcode403 我们维护青蛙从某个石头上可以跳那些长度的距离即可 用平衡树维护. 总的复杂度O(n^2logn) class Solution { public: bool canCross( ...

随机推荐

  1. Tomcat安装、启动和配置

    Tomcat服务器介绍 Tomcat是一个免费开发源代码的web应用服务器,具有与IIS.Apache等web服务器一样处理html页面的功能,另外它还是一个Servlet和JSP容器,独立的serv ...

  2. 拼写纠正 Artificial Intelligence: A Modern Approach

    Artificial Intelligence: A Modern Approach http://mindhacks.cn/2008/09/21/the-magical-bayesian-metho ...

  3. cursor:pointer

    .cursor_hand{ cursor:pointer; }

  4. C# easyui datagrid 复选框填充。

    具体效果如下: 首页

  5. extjs MVC模式的个人看法

    针对一个后台管理页面是mvc模式,后台也是mvc模式下的项目,要怎么去熟悉呢? 首先以我个人的认解,先从后台的管理界面来看,会有control,model,store,view:其中先看view的代码 ...

  6. Qt Model/View(官方翻译,图文并茂)

    http://doc.trolltech.com/main-snapshot/model-view-programming.html 介绍 Qt 4推出了一组新的item view类,它们使用mode ...

  7. error = Error Domain=NSCocoaErrorDomain Code=3840

    json解析,同样的请求,有一个请求,无反应.纠结了几天,终于解决了. error = Error Domain=NSCocoaErrorDomain Code=3840 "Unescape ...

  8. Maven-002-eclipse 插件安装及实例

    因为平常编码的时候,习惯了使用 eclipse 进行编码,因而需要将 eclipse 安装 maven 的插件,安装步骤如下所示: 一.安装 选择菜单: help -> Install New  ...

  9. imx6 MFG TOOL 分析

    之前分析过mfgtool的内容,最近从官网下载,返现新版的mfgtool工具将imx6各种版本的linux/android都使用一个工具进行烧录.所以从新分析一下. 新版与旧版的一个区别是烧写使用的u ...

  10. 树莓派连接wifi

    使用树莓派,通过无线网卡连接wifi,再通过远程桌面或者ssh的连接树莓派比较方便,本文记录树莓派wifi如何设置. 参考链接: http://www.jianshu.com/p/b42e8d3df4 ...