MG loves string

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)

Problem Description
MG is a busy boy. And today he's burying himself in such a problem:

For a length of N, a random string made of lowercase letters, every time when it transforms, all the character i will turn into a[i].

MG states that the a[i] consists of a permutation .

Now MG wants to know the expected steps the random string transforms to its own.

It's obvious that the expected steps X will be a decimal number.
You should output X∗26Nmod 1000000007.

 
Input
The first line is an integer T which indicates the case number.(1<=T<=10)

And as for each case, there are 1 integer N in the first line which indicate the length of random string(1<=N<=1000000000).

Then there are 26 lowercase letters a[i] in the next line.

 
Output
As for each case, you need to output a single line.

It's obvious that the expected steps X will be a decimal number.
You should output X∗26Nmod 1000000007.

 
Sample Input
2
2
abcdefghijklmnpqrstuvwxyzo
1
abcdefghijklmnopqrstuvwxyz
 
Sample Output
5956
26
 
分析:首先,这些字母作映射变换,构成若干个封闭的环;
   其次,环的大小的不同个数不超过6个,因为1+2+3+4+5+6+7>26;
   然后按环的大小分类,得到数组b,表示需要变换i次的字母个数;
   接着状压枚举,问题转化为n个数满足若干不相交集合中每个集合中至少一个元素出现过的方案数;
   而这个问题容斥解决;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e5+;
const int N=2e5+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,a[],b[],qu[],id[],tot;
bool vis[];
char s[];
ll ret;
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
memset(vis,false,sizeof(vis));
memset(id,-,sizeof(id));
ret=;
tot=;
scanf("%d%s",&n,s);
for(i=;i<;i++)
{
if(!vis[i])
{
int cnt=;
int now=i;
while(!vis[now])cnt++,vis[now]=true,now=s[now]-'a';
if(id[cnt]==-)a[tot]=cnt,b[tot]=cnt,id[cnt]=tot++;
else b[id[cnt]]+=cnt;
}
}
for(i=;i<(<<tot);i++)
{
ll lc=;
int cnt=;
for(j=;j<tot;j++)
{
if(i>>j&)lc=lc/gcd(a[j],lc)*a[j],qu[cnt++]=j;
}
ll tmp=;
for(j=;j<(<<cnt);j++)
{
int now=,num=;
for(k=;k<cnt;k++)
{
if(j>>k&)num++,now+=b[qu[k]];
}
if((cnt-num)&)tmp=(tmp-qpow(now,n)+mod)%mod;
else tmp=(tmp+qpow(now,n))%mod;
}
(ret=ret+lc*tmp%mod)%=mod;
}
printf("%lld\n",ret);
}
return ;
}

MG loves string的更多相关文章

  1. 【HDU 6021】 MG loves string (枚举+容斥原理)

    MG loves string  Accepts: 30  Submissions: 67  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: ...

  2. hdu 6021 MG loves string

    MG loves string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others ...

  3. hdu 6021 MG loves string (一道容斥原理神题)(转)

    MG loves string    Accepts: 30    Submissions: 67  Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  4. ●HDU 6021 MG loves string

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=6021 题解: 题意:对于一个长度为 N的由小写英文字母构成的随机字符串,当它进行一次变换,所有字符 i ...

  5. hdu6021[BestCoder #93] MG loves string

    这场BC实在是有趣啊,T2是个没有什么算法但是细节坑的贪心+分类讨论乱搞,T3反而码起来很顺. 然后出现了T2过的人没有T3多的现象(T2:20人,T3:30人),而且T2的AC率是惨烈的不到3% ( ...

  6. hdu 6020 MG loves apple 恶心模拟

    题目链接:点击传送 MG loves apple Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Ja ...

  7. best corder MG loves gold

    MG loves gold  Accepts: 451  Submissions: 1382  Time Limit: 3000/1500 MS (Java/Others)  Memory Limit ...

  8. (set)MG loves gold hdu6019

    MG loves gold Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) ...

  9. 【HDU 6020】 MG loves apple (乱搞?)

    MG loves apple  Accepts: 20  Submissions: 693  Time Limit: 3000/1500 MS (Java/Others)  Memory Limit: ...

随机推荐

  1. 自然常数 e 的理解与应用

    某彩票中奖率是百万分之一,则一个人买一百万张彩票仍不中奖的概率是: (1−1106)106≈1e e 往往出现在: 许多微小事件带来的总体变化 随机性和无穷多:

  2. Android SDK Manager 无法更新问题(转载)

    先看看如何加快更新速度,再说如何更新. 首先更新host文件,如图,打开目录 C:\Windows\System32\drivers\etc,在目录下有hosts文件 打开方式选用“记事本”打开 将一 ...

  3. Appium + python - TouchAction操作

    from appium import webdriverfrom appium.webdriver.common.touch_action import TouchActionfrom appium. ...

  4. html基础代码演示2

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  5. 卸载Mysql connect 6.9.9

    我们在卸载MySQL的时候,会发现有一个名为“Connector Net X.X.X”(如:Connector Net 6.9.9)软件总是卸载不成功,下面我们来看看解决方法:1. 在C盘的目录下,有 ...

  6. 把datagrid转换成gridview

    public gridview datagrid2gridview(datagrid dg) { gridview gv = new gridview(); foreach(var p in dg.c ...

  7. struts2.1.6存在中文乱码的bug

    如题,后续版本中已解决:可以通过添加filter的方式解决.

  8. android中textview单行显示,多余的省略

    <TextView android:id="@+id/music_title" android:layout_width="wrap_content" a ...

  9. IE9的F12工具,"网络"页签,点击"开始捕获"之后,请求显示的状态是"挂起"的分析和解决

    最近一个项目,客户端使用用jQuery编写ajax请求,服务端采用struts2框架.js发送请求和action处理请求过程中,遇到一个问题.刚开始觉得问题很诡异,仔细定位很久之后才发现问题,虽然问题 ...

  10. Redis系列(一)StackExchange.Redis的使用

    Redis系列(一)StackExchange.Redis的使用 一.DLL安装 用NuGet搜索StackExchange.Redis,然后下载就可以. ConnectionMultiplexer对 ...