cvBoostStartTraining, cvBoostNextWeakClassifier和 cvBoostEndTraining
/****************************************************************************************\
* Boosting *
\****************************************************************************************/ typedef struct CvBoostTrainer
{
CvBoostType type; //一共四类例如以下
/* CV_DABCLASS = 0, // 2 class Discrete AdaBoost
CV_RABCLASS = 1, // 2 class Real AdaBoost
CV_LBCLASS = 2, // 2 class LogitBoost
CV_GABCLASS = 3, //2 class Gentle AdaBoost */ int count; /* (idx) ? number_of_indices : number_of_samples */
int* idx;
float* F;
} CvBoostTrainer; /*
* cvBoostStartTraining, cvBoostNextWeakClassifier, cvBoostEndTraining
*
* These functions perform training of 2-class boosting classifier
* using ANY appropriate weak classifier
*/ static
CvBoostTrainer* icvBoostStartTraining( CvMat* trainClasses, //训练样本的类别为0,1
CvMat* weakTrainVals, //训练的弱分类器的输出值,-1和1
CvMat* /*weights*/, //样本权重向量
CvMat* sampleIdx, //正负样本索引
CvBoostType type ) //类型如上
{
uchar* ydata;
int ystep;
int m;
uchar* traindata;
int trainstep;
int trainnum;
int i;
int idx; size_t datasize;
CvBoostTrainer* ptr; //该函数中这个最为重要 int idxnum;
int idxstep;
uchar* idxdata; assert( trainClasses != NULL );
assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 );
assert( weakTrainVals != NULL );
assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); CV_MAT2VEC( *trainClasses, ydata, ystep, m );
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_Assert( m == trainnum ); idxnum = 0;
idxstep = 0;
idxdata = NULL;
if( sampleIdx )
{
CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum );
}
/*******************************ptr的初始化*********************************************/
datasize = sizeof( *ptr ) + sizeof( *ptr->idx ) * idxnum;
ptr = (CvBoostTrainer*) cvAlloc( datasize ); //为ptr分配内存
memset( ptr, 0, datasize ); //初始化ptr,所有为0
ptr->F = NULL;
ptr->idx = NULL; ptr->count = m;
ptr->type = type; if( idxnum > 0 )
{
CvScalar s; //s内部是四个double型的val,分别为val[0],val[1],val[2]val[3] ptr->idx = (int*) (ptr + 1);
ptr->count = idxnum;
for( i = 0; i < ptr->count; i++ )
{
//将原始数据转化为cvScale类型的数据
cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s );
ptr->idx[i] = (int) s.val[0];
}
}
for( i = 0; i < ptr->count; i++ )
{
idx = (ptr->idx) ? ptr->idx[i] : i; *((float*) (traindata + idx * trainstep)) =
2.0F * (*((float*) (ydata + idx * ystep))) - 1.0F;////y*=2y-1,类别标签由{0,1}变为{-1,1}
} return ptr;
} /*
*
* Discrete AdaBoost functions
*依据训练出来的结果与标签进行比較,更新所有样本权重
*/
static
float icvBoostNextWeakClassifierDAB( CvMat* weakEvalVals,
CvMat* trainClasses,
CvMat* /*weakTrainVals*/,
CvMat* weights,
CvBoostTrainer* trainer )
{
uchar* evaldata;
int evalstep;
int m;
uchar* ydata;
int ystep;
int ynum;
uchar* wdata;
int wstep;
int wnum; float sumw;
float err;
int i;
int idx; CV_Assert( weakEvalVals != NULL );
CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 );
CV_Assert( trainClasses != NULL );
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 );
CV_Assert( weights != NULL );
CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m );
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum );
CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum );
CV_Assert( m == wnum ); sumw = 0.0F;
err = 0.0F;
for( i = 0; i < trainer->count; i++ )
{
idx = (trainer->idx) ? trainer->idx[i] : i; sumw += *((float*) (wdata + idx*wstep)); //所有训练样本权重和
err += (*((float*) (wdata + idx*wstep))) *
( (*((float*) (evaldata + idx*evalstep))) !=
2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ); //训练错误样本的权重和
}
err /= sumw; //错误率比值
err = -cvLogRatio( err ); //取对数后,再取相反数,目的是把把err变成正值 for( i = 0; i < trainer->count; i++ )
{
idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( err *
((*((float*) (evaldata + idx*evalstep))) !=
2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F) );//依据训练的结果正确与否,用指数函数更新权重。
sumw += *((float*) (wdata + idx*wstep)); //更新权重后再又一次计算所有样本的权重和
}
for( i = 0; i < trainer->count; i++ )
{
idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx * wstep)) /= sumw; //把更新后的训练样本权重归一化
} return err; //返回err。注意这个err是取对数后,再取相反数的那个err,也就是上文程序中最后那个err
} typedef CvBoostTrainer* (*CvBoostStartTraining)( CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvMat* sampleIdx,
CvBoostType type ); typedef float (*CvBoostNextWeakClassifier)( CvMat* weakEvalVals,
CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvBoostTrainer* data ); CvBoostStartTraining startTraining[4] = {
icvBoostStartTraining,
icvBoostStartTraining,
icvBoostStartTrainingLB,
icvBoostStartTraining
}; CvBoostNextWeakClassifier nextWeakClassifier[4] = {
icvBoostNextWeakClassifierDAB,
icvBoostNextWeakClassifierRAB,
icvBoostNextWeakClassifierLB,
icvBoostNextWeakClassifierGAB
}; /*
*
* Dispatchers
*
*/
CV_BOOST_IMPL
CvBoostTrainer* cvBoostStartTraining( CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvMat* sampleIdx,
CvBoostType type )
{
return startTraining[type]( trainClasses, weakTrainVals, weights, sampleIdx, type );
} CV_BOOST_IMPL
void cvBoostEndTraining( CvBoostTrainer** trainer )
{
cvFree( trainer );
*trainer = NULL;
} CV_BOOST_IMPL
float cvBoostNextWeakClassifier( CvMat* weakEvalVals,
CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvBoostTrainer* trainer )
{
return nextWeakClassifier[trainer->type]( weakEvalVals, trainClasses,
weakTrainVals, weights, trainer );
}
cvBoostStartTraining, cvBoostNextWeakClassifier和 cvBoostEndTraining的更多相关文章
- 史上最全opencv源代码解读,opencv源代码具体解读文件夹
本博原创,如有转载请注明本博网址http://blog.csdn.net/ding977921830/article/details/46799043. opencv源代码主要是基于adaboost算 ...
- opencv源代码之中的一个:cvboost.cpp
我使用的是opencv2.4.9.安装后.我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvboost.cpp.研究源代码 ...
- opencv源代码分析之二:cvhaartraining.cpp
我使用的是opencv2.4.9.安装后.我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvhaartraining.cp ...
随机推荐
- 洛谷2114 bzoj3668[NOI2014]起床困难综合症
题目描述 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作斗争.通过研究相关文献,他找到了该病的发病原因 ...
- 30 个实例详解 ,让运维彻底搞清TOP 命令!
Linux中的top命令显示系统上正在运行的进程.它是系统管理员最重要的工具之一.被广泛用于监视服务器的负载.在本篇中,我们会探索top命令的细节.top命令是一个交互命令.在运行top的时候还可以运 ...
- 搭建app自动化测试环境(一)
①:想实现自动化,第一步先安装python然后第二步安装selenium, 第三步安装JDK,然后J配置好JDK环境变量 JAVA_HOME C:\Program Files\Java\jdk1 ...
- hdu 1166 敌兵布阵 (线段树单点更新)
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) ...
- Leetcode--easy系列9
#198 House Robber You are a professional robber planning to rob houses along a street. Each house ha ...
- 使用bbed恢复表数据
对于表级别的数据恢复,ORACLE提供了多种恢复方法:flashback query,logmnr等. 本文通过演示样例演示使用bbed的copy命令恢复用户误删除或者损坏的表数据,当然我们也能够使用 ...
- hpuoj--校赛--考试来了(水题)
问题 C: 感恩节KK专场--考试来了 时间限制: 1 Sec 内存限制: 128 MB 提交: 475 解决: 112 [提交][状态][讨论版] 题目描述 很多课程马上就结课了,随之而来的就是 ...
- MailKit和MimeKit的.NET基础邮件服务
MailKit和MimeKit的.NET基础邮件服务 邮件服务是一般的系统都会拥有和需要的功能,但是对于.NET项目来说,邮件服务的创建和使用会较为的麻烦..NET对于邮件功能提供了System.Ne ...
- 48.AngularJS ng-src 指令
转自:https://www.cnblogs.com/best/tag/Angular/ 1. <!DOCTYPE html> <html> <head> < ...
- 最标准的 Java MySQL 连接
package com.runoob.test; import java.sql.*; public class MySQLDemo { // JDBC 驱动名及数据库 URL static fina ...