在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 33 种果子,数目依次为 11 , 22 , 99 。可以先将 11 、 22 堆合并,新堆数目为 33 ,耗费体力为 33 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212 ,耗费体力为 1212 。所以多多总共耗费体力 =3+12=15=3+12=15 。可以证明 1515 为最小的体力耗费值。

输入输出格式

输入格式:

共两行。

第一行是一个整数 n(1\leq n\leq 10000)n(1≤n≤10000) ,表示果子的种类数。

第二行包含 nn 个整数,用空格分隔,第 ii 个整数 a_i(1\leq a_i\leq 20000)ai​(1≤ai​≤20000) 是第 ii 种果子的数目。

输出格式:

一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^{31}231 。

输入输出样例

输入样例#1: 复制

3
1 2 9

输出样例#1: 复制

15

说明

对于30%的数据,保证有n \le 1000n≤1000:

对于50%的数据,保证有n \le 5000n≤5000;

对于全部的数据,保证有n \le 10000n≤10000。

思路:利用了哈夫曼树,每次挑出最小的两堆合并为新的,然后继续挑出最小的两堆,直到剩下最后一堆。

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=20005;
int l[maxn];
int main()
{
long long ans=0;
int n;
scanf("%d",&n);
for(int i=0;i<n;++i)
scanf("%d",&l[i]);
while(n>1)
{
int min1=0,min2=1;
if(l[min1]>l[min2])
swap(min1,min2);
for(int i=2;i<n;++i)
{
if(l[i]<l[min1])
{
min2=min1;
min1=i;
}
else if(l[i]<l[min2])
{
min2=i;
}
}
int t=l[min1]+l[min2];
ans+=t;
if(min1==n-1)
swap(min1,min2);
l[min1]=t;
l[min2]=l[n-1];
n--;
}
printf("%lld\n",ans);
return 0;
}

洛谷P1090 合并果子【贪心】的更多相关文章

  1. 洛谷 P1090合并果子【贪心】【优先队列】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  2. 洛谷P1090——合并果子(贪心)

    https://www.luogu.org/problem/show?pid=1090 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合 ...

  3. 堆学习笔记(未完待续)(洛谷p1090合并果子)

    上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...

  4. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  5. 【洛谷P1090 合并果子】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  6. 洛谷P1090 合并果子

    合并果子 题目链接 这个只能用于结构体中 struct item { int val; friend bool operator < (item a,item b) { return a.val ...

  7. 洛谷 p1090 合并果子

    https://www.luogu.org/problemnew/show/P1090 优先队列的经典题目 体现了stl的优越性 #include<bits/stdc++.h> using ...

  8. Java实现 洛谷 P1090 合并果子

    import java.io.BufferedInputStream; import java.util.Arrays; import java.util.Scanner; public class ...

  9. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

随机推荐

  1. 《Google 软件测试之道》摘录

    最近刚刚看完<Google 软件测试之道>,受益颇多,遂记录下: 只有在软件产品变得重要的时候质量才显得重要 第一章:谷歌软件测试介绍 角色介绍 SWE(Software Engineer ...

  2. NSThread/NSOperation/GCD 三种多线程技术

    1.iOS的三种多线程技术 1.NSThread 每个NSThread对象对应一个线程,量级较轻(真正的多线程) 2.以下两点是苹果专门开发的“并发”技术,使得程序员可以不再去关心线程的具体使用问题 ...

  3. Pycharm之Terminal使用

    相当于doc命令,即工程所在目录shift+右键命令窗口打开的doc 1.清屏  ------   cls 清除屏幕上的所有显示,光标置于屏幕左上角.

  4. visual studio2013 C++查看对象布局

    一在visual studio中进行设置,可以方便的查看对象的内存布局 右键所要显示的*.cpp >> 属性 >> 命令行 >> 其它选项 在其他选项中添加: /d ...

  5. Linux Framebuffer 驱动框架之一概念介绍及LCD硬件原理【转】

    本文转载自:http://blog.csdn.net/liuxd3000/article/details/17464779 一.基本概念 帧缓冲(Framebuffer)是Linux系统为显示设备提供 ...

  6. C语言程序读写文件(文件内存一个十进制数,每读一次数值加一)

    1.问题:C语言程序实现读写一个txt文件,txt文件中存储一个十进制数.每读一次该数值加一. 2.实现:新建一个文件夹,在该文件夹中建一个outputFileName.txt文件.内容是:1,再在该 ...

  7. Gym - 101981M The 2018 ICPC Asia Nanjing Regional Contest M.Mediocre String Problem Manacher+扩增KMP

    题面 题意:给你2个串(长度1e6),在第一个串里找“s1s2s3”,第二个串里找“s4”,拼接后,是一个回文串,求方案数 题解:知道s1和s4回文,s2和s3回文,所以我们枚举s1的右端点,s1的长 ...

  8. 禁止tomcat扫描jar包的tld文件

    禁止tomcat扫描jar包的tld文件tomcat/conf/logging.properties 取消注释org.apache.jasper.compiler.TldLocationsCache. ...

  9. Jsp页面报错状态码含义

    原来,全部在HttpServletResponse接口的字段里 状态码 (),表示一个请求已经被接受处理,但还没有完成.  状态码 (),表明HTTP服务器从一个服务器收到了一个无效的响应,当其作为一 ...

  10. android黑科技系列——防自动抢红包外挂原理解析

    一.前言 春节过年发个红包本来就是为了讨个喜庆,朋友亲戚之间的关系交流,但是现在随着技术变革,抢红包插件越来越多,导致现在不太愿意发红包了,特别是在一个多人群里,潜水的非常多,但是丢个红包瞬间就没了, ...