Principal Component Analysis ---- PRML读书笔记
To summarize, principal component analysis involves evaluating the mean x and the covariance matrix S
of the data set and then finding the M eigenvectors of S corresponding to the M largest eigenvalues. If we
plan to project our data onto the first M principal compents, then we only need to find the first M eigenvalues
and eigenvectors.
PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear space, known as
the principal subspace, such that the variance of the projected data is maximized. Equivalently, it can be defined
as the linear projection that minimizes the average projection cost, defined as the mean squared distance between
the data points and their projections.
Consider a data set of observations {xn} where n = 1,...,N, and xn is a Euclidean variable with dimensionality D.
Our goal is to project the data onto a space having dimensionality M < D while maximizing the variance of the projected
data.
The general solution to the minimization of J for arbitrary D and arbitrary M < D is obtained by choosing the {ui} to be
eigenvectors of the covariance matrix given by Sui=λiui. where i=1,...,D, and as usual the eigenvectors {ui} are chosen to
be orthonormal.
Principal Component Analysis ---- PRML读书笔记的更多相关文章
- 《principal component analysis based cataract grading and classification》学习笔记
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...
- Principal Component Analysis(PCA) algorithm summary
Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...
- Robust Principal Component Analysis?(PCP)
目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...
- Sparse Principal Component Analysis via Rotation and Truncation
目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...
- PCA(Principal Component Analysis)主成分分析
PCA的数学原理(非常值得阅读)!!!! PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...
- Principal Component Analysis(PCA)
Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...
- (4)主成分分析Principal Component Analysis——PCA
主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...
- 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...
- Probabilistic Principal Component Analysis
目录 引 主要内容 EM算法求解 附录 极大似然估计 代码 Tipping M E, Bishop C M. Probabilistic Principal Component Analysis[J] ...
随机推荐
- mounted钩子问题
recommend.vue <script type="text/ecmascript-6"> import Slider from 'base/slider/slid ...
- ( 转)Hibernate常用API
http://blog.csdn.net/yerenyuan_pku/article/details/65103203 可在度娘上摘抄如下文字: Hibernate的核心类和接口一共有6个,分别为:S ...
- Codeforces_The least round way
B. The least round way time limit per test 2 seconds memory limit per test 64 megabytes input standa ...
- function&箭头函数
JS中this到底指向谁? function:谁调用指向谁 var id = '654321' var handler = { id: '123456', init: function() { con ...
- js的StringBuffer类
function StringBuffer(str){ var arr = []; str = str || ""; arr.push(str); this.append = fu ...
- 简单的SpringBoot环境搭建
开始搭建前请确认您的计算机中的Maven已正确配置 一:使用IDEA创建一个Maven项目,图中第一个指针请选择自己正在使用的JDK版本,指针二请打勾,选中指针三所指向的类型并点击Next 二:填写G ...
- JavaScript初步学习----基本使用,简单事件,修改样式,数据类型
JavaScript基本使用 JavaScript原名叫livescript,是一门动态类型,弱类型基于原型的脚本语言 用于页面特效,前后交替,后台开发(node) JavaScript写在s ...
- 【郑轻邀请赛 B】base64解密
[题目链接]:https://acm.zzuli.edu.cn/zzuliacm/problem.php?id=2128 [题意] [题解] 把密文; 在表中找到每个字符对应的数字; 然后转换成相应的 ...
- PatentTips - Substitute virtualized-memory page tables
BACKGROUND Many computer systems utilize virtualized memory for security, stability and/or other pur ...
- Debug : array type has incomplete element type
array type has incomplete element type extern struct SoundReport SoundList[32]; ///// 多写了 st ...