To summarize, principal component analysis involves evaluating the mean x and the covariance matrix S

of the data set and then finding the M eigenvectors of S corresponding to the M largest eigenvalues. If we

plan to project our data onto the first M principal compents, then we only need to find the first M eigenvalues

and eigenvectors.

PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear space, known as

the principal subspace, such that the variance of the projected data is maximized. Equivalently, it can be defined

as the linear projection that minimizes the average projection cost, defined as the mean squared distance between

the data points and their projections.

Consider a data set of observations {xn} where n = 1,...,N, and xn is a Euclidean variable with dimensionality D.

Our goal is to project the data onto a space having dimensionality M < D while maximizing the variance of the projected

data.

The general solution to the minimization of J for arbitrary D and arbitrary M < D is obtained by choosing the {ui} to be

eigenvectors of the covariance matrix given by Suiiui. where i=1,...,D, and as usual the eigenvectors {ui} are chosen to

be orthonormal.

Principal Component Analysis ---- PRML读书笔记的更多相关文章

  1. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

  2. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  3. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  4. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  5. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  6. Principal Component Analysis(PCA)

    Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...

  7. (4)主成分分析Principal Component Analysis——PCA

    主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...

  8. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

  9. Probabilistic Principal Component Analysis

    目录 引 主要内容 EM算法求解 附录 极大似然估计 代码 Tipping M E, Bishop C M. Probabilistic Principal Component Analysis[J] ...

随机推荐

  1. html5——全屏滚动

    鼠标滚轮 window.onmousewheel=function(){}; 基本描述 1.我们使用插件fullpage,为了更好的兼容性 2.动画效果是在滚动到这一屏时触发的,此时给当前屏幕加cur ...

  2. jmeter解决中文乱码问题

    问题: 当响应数据或响应页面没有设置编码时,jmeter会按照jmeter.properties文件中,sampleresult.default.encoding 设置的格式解析默认ISO-8859- ...

  3. Eclipse 使用前的配置

    一,修改eclipse对jdk的依赖项 1.查看设置的编译器编译版本:设置成本地jdk一致的版本 点击窗口->首选项 找到java 选择编辑器,查看现在的编译jdk版本 改成本地jdk版本 jd ...

  4. Centos7下mysql的主从配置

    最近,有朋友业务并发量比较大,让我帮他配置个主从,来缓解数据库的压力.下面就是我配置的,有需要的朋友可以借鉴下. 首先,我得到2台服务器: 172.18.2.142(主) 172.18.2.141(从 ...

  5. Linux判断

    #字符串比较if [ "$1" == "判断条件" ] then echo "$1" elif [ "$1" == &q ...

  6. 8 pandas模块,多层索引

      1 创建多层索引     1)隐式构造         最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组           · Series也可以创建多层索引    ...

  7. SFTP文件上传下载

    http://www.cnblogs.com/longyg/archive/2012/06/25/2556576.html  (转载)

  8. 3D全景之ThreeJs

    3D全景之ThreeJs 一.前言 随着H5越来越多的被应用到各个领域,3D也越来越频繁的出现在各个H5案例中,今天我们就来讨论一下3D全景的实现. 据百度百科上介绍:720全景是视角超过人的正常视角 ...

  9. 【[Offer收割]编程练习赛 14 A】小Hi和小Ho的礼物

    [题目链接]:http://hihocoder.com/problemset/problem/1505 [题意] [题解] 考虑Meet in the middle. 因为两个数的和不是很大; 直接用 ...

  10. 2.3. Configuring sudo Access-RedHat

    https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform/2/html/Get ...