HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )
链接:传送门
题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E-queue的个数 % M
思路:
这道题的关键是找到递推关系!递推关系为:Fn = Fn-1 + Fn-3 + Fn-4,与HDU1575简直一模一样,然后直接矩阵快速幂就OK了
递推关系式不好找,我们可以将字母 f m 分别看为 1 0,给出一个长度L,排列数是为 2^L ,可以把它简单看作一个二进制数,L = 3 时这个队列的排列情况就是数 [ 0 ~ 2^3 ] ,可以写出来看看
L = 3
- 0 0 0 , 0 0 1 , 0 1 0 , 0 1 1 , 1 0 0 , 1 0 1 , 1 1 0 , 1 1 1,不符合要求的是 1 0 1 & 1 1 1,所以 L = 3 时 E-queue 为 6
L = 4,可以认为是 2^3 * 2^ 3
- 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 0 1 1 , 0 1 0 0 , 0 1 0 1 , 0 1 1 0 , 0 1 1 1
- 1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1 1 0 0 , 1 1 0 1 , 1 1 1 0 , 1 1 1 1
可以看出是 L = 3 的情况在前面分别加上 0 1 ,加上 0 是不影响 E-queue 的个数的 , 所以 L = 4 答案的来源 是 L = 3 和其他来源,后来写出了L = 5 和 L = 6 时候的答案,发现 Fn = Fn-1 + Fn-3 + Fn-4 ( n 相当于 L ),具体为什么为还没有得到一种比较合理的解释,过段时间再补吧......递推关系的寻找还是相当重要的...... 我真是菜的扣脚...... 还是蒟蒻
/*************************************************************************
> File Name: hdu2604.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月03日 星期三 18时30分45秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
int MOD;
const int maxn = 4;
#define ll long long
#define mod(x) ((x)%MOD)
struct mat{
int m[maxn][maxn];
}unit;
mat operator *(mat a,mat b){
mat ret;
ll x;
for(int i=0;i<4;i++){
for(int j=0;j<4;j++){
x = 0;
for(int k=0;k<4;k++)
x += mod( (ll)a.m[i][k]*b.m[k][j] );
ret.m[i][j] = x;
}
}
return ret;
}
void init_unit(){
for(int i=0;i<maxn;i++) unit.m[i][i] = 1;
return;
}
mat pow_mat(mat a,ll x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
}
mat a,b;
void init(){
memset(a.m,0,sizeof(a.m));
memset(b.m,0,sizeof(b.m));
a.m[0][0] = a.m[0][2] = a.m[0][3] = 1;
a.m[1][0] = a.m[2][1] = a.m[3][2] = 1;
b.m[0][0] = 9; b.m[1][0] = 6;
b.m[2][0] = 4; b.m[3][0] = 2;
}
int main(){
init();
init_unit();
int ss[4] = {2,4,6,9};
int n;
while(~scanf("%d%d",&n,&MOD)){
if(n<5) printf("%d\n",ss[n-1]%MOD);
else{
mat ans = pow_mat(a,n-4);
ans = ans*b;
printf("%d\n",ans.m[0][0]%MOD);
}
}
return 0;
}
HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )的更多相关文章
- hdu 2604 Queuing(矩阵快速幂乘法)
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- HDU 2604 Queuing(矩阵快速幂)
题目链接:Queuing 题意:有一支$2^L$长度的队伍,队伍中有female和male,求$2^L$长度的队伍中除 fmf 和 fff 的队列有多少. 题解:先推导递推式:$f[i]=f[i-1] ...
- hdu 2604 递推 矩阵快速幂
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...
- HDU 2604 Queuing,矩阵高速幂
题目地址:HDU 2604 Queuing 题意: 略 分析: 易推出: f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] ...
- HDU 2604 Queuing(矩阵高速幂)
题目地址:HDU 2604 这题仅仅要推出公式来,构造矩阵就非常easy了.问题是推不出公式来..TAT.. 从递推的思路考虑.用f(n)表示n个人满足条件的结果.假设最后一个是m则前n-1人能够随意 ...
- hdu 2604 Queuing (矩阵高速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
随机推荐
- [Noi2002]Savage
[Noi2002]Savage 数学题. 题解回去写(有个坑点) flag++ #include <cstdio> int n,m,c[25],p[29],l[29]; int exgcd ...
- JAVA基础知识复习小结
集合 Set集合 Set集合的基本特征是元素不允许重复.HashSet不保存元素顺序,LinkedHashSet用链表保持元素的插入顺序,TreeSet可定制排序规则. HashSet的底层是用Has ...
- java自带线程池和队列详细讲解,android中适用
Java线程池使用说明 一简介 线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的.在jdk1.5之后这一情况有了很大的改观.Jdk1.5之后 ...
- FFMPEG 音频转换命令
音频转换: .转换amr到mp3: ffmpeg -i shenhuxi.amr amr2mp3.mp3 .转换amr到wav: ffmpeg -acodec libamr_nb -i shenhux ...
- SpringBoot 对静态资源的映射规则
一.所有 /webjars/** ,都去 classpath:/META-INF/resources/webjars/ 找资源 webjars:以jar包的方式引入静态资源,如下:引入 jquery ...
- appium运行from appium import webdriver 提示most recent call last
这是因为首次启动提示没有APPIUM 模块,CMD 执行 :pip3 install Appium-Python-Client
- Python Study (06)内存管理GC
对象在内存的存储,我们可以求助于Python的内置函数id().它用于返回对象的身份(identity).其实,这里所谓的身份,就是该对象的内存地址. a = 1 print(id(a)) #1124 ...
- 朴素的UNIX之-调度器细节
0.多进程调度的本质 我们都知道UNIX上有一个著名的nice调用.何谓nice,当然是"好"了.常规的想法是nice值越大越好,实际上,nice值越好,自己的优先级越低.那么为何 ...
- 2015.04.23,外语,读书笔记-《Word Power Made Easy》 12 “如何奉承朋友” SESSION 33
1.eat, drink, and be merry 拉丁动词vivo(to live),加上名词vita(life),是许多重要英文词汇的来源. convivo是拉丁动词to live togeth ...
- 关于vue 自定义组件的写法与用法
最近在网上看到很多大神都有写博客的习惯,坚持写博客不但可以为自己的平时的学习做好记录积累 无意之中也学还能帮助到一些其他的朋友所以今天我也注册一个账号记录一下学习的点滴!当然本人能力实在有限写出的文章 ...