链接:传送门

题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E-queue的个数 % M

思路:

  • 这道题的关键是找到递推关系!递推关系为:Fn = Fn-1 + Fn-3 + Fn-4,与HDU1575简直一模一样,然后直接矩阵快速幂就OK了

  • HDU 1575 题解链接

  • 递推关系式不好找,我们可以将字母 f m 分别看为 1 0,给出一个长度L,排列数是为 2^L ,可以把它简单看作一个二进制数,L = 3 时这个队列的排列情况就是数 [ 0 ~ 2^3 ] ,可以写出来看看

    • L = 3

      • 0 0 0 , 0 0 1 , 0 1 0 , 0 1 1 , 1 0 0 , 1 0 1 , 1 1 0 , 1 1 1,不符合要求的是 1 0 1 & 1 1 1,所以 L = 3 时 E-queue 为 6
    • L = 4,可以认为是 2^3 * 2^ 3

      • 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 0 1 1 , 0 1 0 0 , 0 1 0 1 , 0 1 1 0 , 0 1 1 1
      • 1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1 1 0 0 , 1 1 0 1 , 1 1 1 0 , 1 1 1 1
    • 可以看出是 L = 3 的情况在前面分别加上 0 1 ,加上 0 是不影响 E-queue 的个数的 , 所以 L = 4 答案的来源 是 L = 3 和其他来源,后来写出了L = 5 和 L = 6 时候的答案,发现 Fn = Fn-1 + Fn-3 + Fn-4 ( n 相当于 L ),具体为什么为还没有得到一种比较合理的解释,过段时间再补吧......递推关系的寻找还是相当重要的...... 我真是菜的扣脚...... 还是蒟蒻


/*************************************************************************
> File Name: hdu2604.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月03日 星期三 18时30分45秒
************************************************************************/ #include<bits/stdc++.h>
using namespace std; int MOD;
const int maxn = 4;
#define ll long long
#define mod(x) ((x)%MOD) struct mat{
int m[maxn][maxn];
}unit; mat operator *(mat a,mat b){
mat ret;
ll x;
for(int i=0;i<4;i++){
for(int j=0;j<4;j++){
x = 0;
for(int k=0;k<4;k++)
x += mod( (ll)a.m[i][k]*b.m[k][j] );
ret.m[i][j] = x;
}
}
return ret;
}
void init_unit(){
for(int i=0;i<maxn;i++) unit.m[i][i] = 1;
return;
}
mat pow_mat(mat a,ll x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
} mat a,b;
void init(){
memset(a.m,0,sizeof(a.m));
memset(b.m,0,sizeof(b.m));
a.m[0][0] = a.m[0][2] = a.m[0][3] = 1;
a.m[1][0] = a.m[2][1] = a.m[3][2] = 1;
b.m[0][0] = 9; b.m[1][0] = 6;
b.m[2][0] = 4; b.m[3][0] = 2;
}
int main(){
init();
init_unit();
int ss[4] = {2,4,6,9};
int n;
while(~scanf("%d%d",&n,&MOD)){
if(n<5) printf("%d\n",ss[n-1]%MOD);
else{
mat ans = pow_mat(a,n-4);
ans = ans*b;
printf("%d\n",ans.m[0][0]%MOD);
}
}
return 0;
}

HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )的更多相关文章

  1. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  2. HDU 2604 Queuing(矩阵快速幂)

    题目链接:Queuing 题意:有一支$2^L$长度的队伍,队伍中有female和male,求$2^L$长度的队伍中除 fmf 和 fff 的队列有多少. 题解:先推导递推式:$f[i]=f[i-1] ...

  3. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  4. HDU 2604 Queuing,矩阵高速幂

    题目地址:HDU 2604 Queuing 题意:  略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] ...

  5. HDU 2604 Queuing(矩阵高速幂)

    题目地址:HDU 2604 这题仅仅要推出公式来,构造矩阵就非常easy了.问题是推不出公式来..TAT.. 从递推的思路考虑.用f(n)表示n个人满足条件的结果.假设最后一个是m则前n-1人能够随意 ...

  6. hdu 2604 Queuing (矩阵高速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  7. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  8. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  9. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

随机推荐

  1. 训练1-H

    小明今年3岁了, 现在他已经能够认识100以内的非负整数, 并且能够进行100以内的非负整数的加法计算. 对于大于等于100的整数, 小明仅保留该数的最后两位进行计算, 如果计算结果大于等于100, ...

  2. Web项目部署(Flask Angular2 Nginx)

    独立弄了一个项目,也是锻炼自己的工程能力,使用了比较常用的框架,后端Flask,前端Angular2,采用前后端完全分离的方式,通过接口传输json,但是在具体部署过程中,查找资料较为零散,故整理如下 ...

  3. 在 Windows10 系统中安装 Homestead 本地开发环境

    在 windows10 系统中安装 homestead 本地开发环境 在 windows10 环境下安装 homestead 开发环境,网上有很多相关教程其中大多都是 mac 环境,很多大神都是用户的 ...

  4. ACdream 1229 Data Transmission

    Data Transmission Special JudgeTime Limit: 12000/6000MS (Java/Others)Memory Limit: 128000/64000KB (J ...

  5. C和C++ const的声明差异

    当在C源代码文件中将变量声明为const时,可以通过以下方式实现: const int i = 2; 然后,可以在另一个模块中使用此变量,如下表示: extern const int i; 但若要获取 ...

  6. NEFU 109

    n最大为2000000000(不知为什么OJ上是1000),若为判断2000000000是素数,则必有一个素数在sqrt(n)内,求出这个范围 的所有素数,其比最大数据小的n'的sqrt(n')也在这 ...

  7. eclipse转Android studio遇到的那些坑

           公司项目有导入10多个libray,还有涉及ndk,转Android studio时碰到不少问题.前后大概花费5个工作日,中间各种奇葩bug,各种编译出错,非常多还有没错误提示.一度想过 ...

  8. HDU - 4054 Hexadecimal View (2011 Asia Dalian Regional Contest)

    题意:按要求输出.第一列是表示第几行.每行仅仅能有16个字节的字母,第二列是16进制的ASCII码.第三列大写和小写转换 思路:纯模拟,注意字母的十六进制是2位 #include <iostre ...

  9. zzulioj--1637--Happy Thanksgiving Day - WoW yjj!(水)

    1637: Happy Thanksgiving Day - WoW yjj! Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 104  Solved: ...

  10. SQLserver中用convert函数转换日期格式(1)

    SQLserver中用convert函数转换日期格式2008-01-15 15:51SQLserver中用convert函数转换日期格式 SQL Server中文版的默认的日期字段datetime格式 ...