HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )
链接:传送门
题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E-queue的个数 % M
思路:
这道题的关键是找到递推关系!递推关系为:Fn = Fn-1 + Fn-3 + Fn-4,与HDU1575简直一模一样,然后直接矩阵快速幂就OK了
递推关系式不好找,我们可以将字母 f m 分别看为 1 0,给出一个长度L,排列数是为 2^L ,可以把它简单看作一个二进制数,L = 3 时这个队列的排列情况就是数 [ 0 ~ 2^3 ] ,可以写出来看看
L = 3
- 0 0 0 , 0 0 1 , 0 1 0 , 0 1 1 , 1 0 0 , 1 0 1 , 1 1 0 , 1 1 1,不符合要求的是 1 0 1 & 1 1 1,所以 L = 3 时 E-queue 为 6
L = 4,可以认为是 2^3 * 2^ 3
- 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 0 1 1 , 0 1 0 0 , 0 1 0 1 , 0 1 1 0 , 0 1 1 1
- 1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1 1 0 0 , 1 1 0 1 , 1 1 1 0 , 1 1 1 1
可以看出是 L = 3 的情况在前面分别加上 0 1 ,加上 0 是不影响 E-queue 的个数的 , 所以 L = 4 答案的来源 是 L = 3 和其他来源,后来写出了L = 5 和 L = 6 时候的答案,发现 Fn = Fn-1 + Fn-3 + Fn-4 ( n 相当于 L ),具体为什么为还没有得到一种比较合理的解释,过段时间再补吧......递推关系的寻找还是相当重要的...... 我真是菜的扣脚...... 还是蒟蒻
/*************************************************************************
> File Name: hdu2604.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月03日 星期三 18时30分45秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
int MOD;
const int maxn = 4;
#define ll long long
#define mod(x) ((x)%MOD)
struct mat{
int m[maxn][maxn];
}unit;
mat operator *(mat a,mat b){
mat ret;
ll x;
for(int i=0;i<4;i++){
for(int j=0;j<4;j++){
x = 0;
for(int k=0;k<4;k++)
x += mod( (ll)a.m[i][k]*b.m[k][j] );
ret.m[i][j] = x;
}
}
return ret;
}
void init_unit(){
for(int i=0;i<maxn;i++) unit.m[i][i] = 1;
return;
}
mat pow_mat(mat a,ll x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
}
mat a,b;
void init(){
memset(a.m,0,sizeof(a.m));
memset(b.m,0,sizeof(b.m));
a.m[0][0] = a.m[0][2] = a.m[0][3] = 1;
a.m[1][0] = a.m[2][1] = a.m[3][2] = 1;
b.m[0][0] = 9; b.m[1][0] = 6;
b.m[2][0] = 4; b.m[3][0] = 2;
}
int main(){
init();
init_unit();
int ss[4] = {2,4,6,9};
int n;
while(~scanf("%d%d",&n,&MOD)){
if(n<5) printf("%d\n",ss[n-1]%MOD);
else{
mat ans = pow_mat(a,n-4);
ans = ans*b;
printf("%d\n",ans.m[0][0]%MOD);
}
}
return 0;
}
HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )的更多相关文章
- hdu 2604 Queuing(矩阵快速幂乘法)
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- HDU 2604 Queuing(矩阵快速幂)
题目链接:Queuing 题意:有一支$2^L$长度的队伍,队伍中有female和male,求$2^L$长度的队伍中除 fmf 和 fff 的队列有多少. 题解:先推导递推式:$f[i]=f[i-1] ...
- hdu 2604 递推 矩阵快速幂
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...
- HDU 2604 Queuing,矩阵高速幂
题目地址:HDU 2604 Queuing 题意: 略 分析: 易推出: f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] ...
- HDU 2604 Queuing(矩阵高速幂)
题目地址:HDU 2604 这题仅仅要推出公式来,构造矩阵就非常easy了.问题是推不出公式来..TAT.. 从递推的思路考虑.用f(n)表示n个人满足条件的结果.假设最后一个是m则前n-1人能够随意 ...
- hdu 2604 Queuing (矩阵高速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
随机推荐
- 【BZOJ3451】Tyvj1953 Normal - 点分治+FFT
题目来源:NOI2019模拟测试赛(七) 非原题面,题意有略微区别 题意: 吐槽: 心态崩了. 好不容易场上想出一题正解,写了三个小时结果写了个假的点分治,卡成$O(n^2)$ 我退役吧. 题解: 原 ...
- js操作table中tr的顺序,实现上移下移一行的效果
总体思路是在table外部加个div,修改div的innerHtml实现改变tr顺序的效果 具体思路是 获取当前要移动tr行的rowIndex,在table中删除掉,然后循环table的rows,到了 ...
- php的优缺点(转)
1. 跨平台,性能优越,跟Linux/Unix结合别跟Windows结合性能强45%,并且和很多免费的平台结合非常省钱,比如LAMP(Linux /Apache/Mysql/PHP)或者FAMP(Fr ...
- [SCOI2010] 股票交易 (单调队列优化dp)
题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi, ...
- 修改linux新建账户时的过期时间
#!/bin/bash cat << EOF >> /etc/login.defs PASS_MAX_DAYS 90 EOF
- php中文乱码处理方法
昨天在本地环境创建了一个文件,文件编码是UTF-8格式,打印一个简单的语句竟然出现了中文乱码,折腾了很久,才找到了原因. 乱码问题 昨天写了一个很简单的php输出中文页面,但是出现了乱码问题,第一反应 ...
- 2019-04-03 Anaconda+VSCode搭建python开发环境,并连接GIthub
1.最好的Python开发环境 :Anaconda+VSCode搭建python开发环境,conda提供了python开发环境和大量的你不用安装的库 conda的环境变量: 直接在conda 中下载启 ...
- vue-cli快速搭建
vue-cli是用于开发大型vue项目的脚手架工具,使用vue-cli搭建好平台后,只需要关注程序的开发,不用过多的花时间去思考文件配置的问题 当然,还是可以任意进行自定义配置,官方地址:vue-cl ...
- C调用java方法签名
1.AS2.0 D:\androidMyWork\SmartCam\app\build\intermediates\classes\debug>javap -s com.admin.smartc ...
- Flume 读取实时更新的日志文件
http://blog.csdn.net/bright60/article/details/50728306 我用了第一种方法. 1. 日志文件每天roate一个新文件 a) 方案一 There i ...