Karatsuba 快速乘积算法是具有独特合并过程(combine/merge)的分治算法(Karatsuba 是俄罗斯人)。此算法主要是对两个整数进行相乘,并不适用于低位数(如 int 的 32 位的整数)。

1. 大整数乘法的实现

所谓的大整数,就是超出编程语言关于 integral 类型的最大值的那些位数很大的数,也即如果用这些类型进行存储的话,会造成数值溢出(arithmetic overflow),此时可以使用 vector<int> 逐位存储这些数。

执行两数的乘法的方法就是我们小学学乘法时所采用的方式,normalize 负责处理每一位上的进位情况。

void normalize(vector<int>& c){
for (int i = 0; i < c.size()-1; ++i){
c[i+1] += c[i]/10;
c[i] %= 10;
}
} vector<int> multiply(const vector<int>& a, const vector<int>& b){
vector<int> c(a.size()+b.size(), 0);
for (int i = 0; i < a.size(); ++i){
for (int j = 0; j < b.size(); ++j){
c[i+j] += a[i]*b[j];
}
}
normalize(c);
return c;
}

2. Karatsuba 快速算法

Karatsuba 快速乘积算法首先将两个整数分别一分为二。例如,a 和 b 各位 256 位的整数,那么使用 a1 和 b1 保存前 128 为,而 a0 和 b0 中保存后 128 位。分割后,a 和 b 可写成如下的形式。

{a=a1⋅10128+a0b=b1⋅10128+b0

所以将 a×b 分割成四项式有如下等式:

a×b==(a1×10128+a0)(b110128+b0)a1b1z210256+(a0b1+a1b0)z110128+a0b0z0

首先根据 z0=a0⋅b0,z2=a1⋅b1 计算 z0,z1,然后利用以下等式:

(a0+a1)⋅(b0+b1)=z0+z1+z2

因此:

  • z2 = a1 * b1
  • z0 = a0 * b0
  • z1 = (a0 + b0)(a1 + b1)-z2-z0

从大整数乘法的实现到 Karatsuba 快速算法的更多相关文章

  1. JAVA版拆分大整数为2幂的和算法

    import java.util.ArrayList; import java.util.List; public class StrTest { public static void main(St ...

  2. 大整数分解质因数(Pollard rho算法)

    #include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...

  3. 大整数算法[11] Karatsuba乘法

    ★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) ...

  4. [转]大整数算法[11] Karatsuba乘法

    ★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) ...

  5. 大整数相乘问题总结以及Java实现

    最近在跟coursera上斯坦福大学的算法专项课,其中开篇提到了两个整数相乘的问题,其中最简单的方法就是模拟我们小学的整数乘法,可想而知这不是比较好的算法,这门课可以说非常棒,带领我们不断探索更优的算 ...

  6. 自上而下,逐步揭开PHP解析大整数的面纱

    遇到的问题 最近遇到一个PHP大整数的问题,问题代码是这样的 $shopId = 17978812896666957068; var_dump($shopId); 上面的代码输出,会把$shopId转 ...

  7. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  8. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  9. 基于Java的大整数运算的实现(加法,减法,乘法)学习笔记

    大整数,顾名思义就是特别大的整数. 一台64位的机器最大能表示的数字是2的64次方减一: 18446744073709551615 java语言中所能表示的整数(int)最小为-2147483648 ...

随机推荐

  1. iOS Scheme 跳转主流实现方案

    iOS Scheme跳转主流实现方案主要是路由跳转,目前iOS常用路由框架是JLRouter.HHRouter.MGJRouter. 但是这些路由库都各有不足,首先是JLRouter,用不到的功能繁多 ...

  2. JQ遍历 input 并修改name属性

    1.执行完克隆行后,会出现name属相相同的问题 function addRow(){ var obj = $("tr[name='info']:last"); var objCl ...

  3. SPI总线工作模式

    一.SPI总线工作模式 SPI总线有四种工作模式,是由时钟极性选择(CPOL)和时钟相位选择(CPHA)决定的. CPOL = 0 ,SPI总线空闲为低电平,CPOL = 1, SPI总线空闲为高电平 ...

  4. [Python] Understand Scope in Python

    Misunderstanding scope can cause problems in your application. Watch this lesson to learn how Python ...

  5. JNI之——Can&#39;t load IA 32-bit .dll on a AMD 64-bit platform错误的解决

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46605003 在JNI开发中,Java程序须要调用操作系统动态链接库时,报错信息: ...

  6. 什么是PV和UV?

    技术角度 1个PV是指从浏览器发出一个对网络server的Request,网络server接到Request之后.会開始把该Request相应的一个Page(Page就是一个网页)发送到client的 ...

  7. 61.node.js开发错误——Error: Connection strategy not found

    转自:https://blog.csdn.net/fd214333890/article/details/53457145

  8. es6 -- 透彻掌握Promise的使用,读这篇就够了

    Promise的重要性我认为我没有必要多讲,概括起来说就是必须得掌握,而且还要掌握透彻.这篇文章的开头,主要跟大家分析一下,为什么会有Promise出现. 在实际的使用当中,有非常多的应用场景我们不能 ...

  9. html的学习思维导图

  10. c# for 和 foreach

    1给定长度 不需要计算长度的 for比foreach循环效率高 2 在不确定长度 或者计算长度有性能损耗的时候 用foreach比较方便 2336 循环语句是编程的基本语句,在C#中除了沿用C语言的循 ...