usaco No Change, 2013 Nov 不找零(二分查找+状压dp)
Description
约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci 元。今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身上只有 K 张消费卡,第 i 张卡里有 Vi 元余额。
问题是,这些消费卡都是一次性的,它们可以被收银机读取,但如果卡一旦离开了收银机,卡里 的余额就会归零,而且超市也不负责找零!奶牛的队伍很长,不可能再调整她们的位置了,所以一张 卡只能支付一段连在一起的账单。而且,一张账单只能用一张消费卡支付,超市的系统不接受用两张 或以上的卡支付一笔账单。
约翰的问题就是按照什么样的顺序来使用这些消费卡,才能让他能为所有的奶牛买单,而且使得 剩余的消费卡的余额之和最大呢?
Input Format
• 第一行:两个整数 K 和 N ,1 ≤ K ≤ 16, 1 ≤ N ≤ 10^5
• 第二行到第 K + 1 行:第 i + 1 行有一个整数 Vi,1 ≤ Vi ≤ 10^9
• 第 K + 2 行到第 K + N + 1 行:第 i + K + 1 行有一个整数 Ci,1 ≤ Ci ≤ 10^4
Output Format
单个整数:表示约翰买完所有奶牛的单之后,最多还能剩多少余额,如果他带的卡根本没有办 法支付所有的账单,输出 −1。
Sample Input
3 6
12
15
10
6
3
3
2
3
7
Sample Output
12
解释
用 10 元的卡支付前两笔账单,然后用 15 元
的卡支付后面所有的账单,还剩下一张 12 元的卡
没用
Hint
Source
No Change, 2013 Nov
我们要维护两个值;
f[i]是到i这个消费卡的使用状态最多能付多少奶牛的账单;
g[i]是在f[i]最大前提下剩余的最多余额;
由于在转移过程中要快速查找当前消费卡从当前位置开始能支付的最长序列;
所以加上二分查找 T((1<<k)logn)
设c为当前消费卡从当前位置开始能支付的最长序列的终点;
那么就有以下方程
if(c>f[i]||(c==f[i]&g[i-(1<<j-1)]-w[j]>g[i]))
f[i]=c,g[i]=g[i-(1<<j-1)]-w[j];
#include<cstdio>
#include<iostream>
using namespace std;
int a[100010],g[1<<16],f[1<<16],w[20],ans=-1;
int i,j,n,k,inf,l,r,mid;
int find(int st,int x)
{
l=st;r=n+1;a[n+1]=1e9;
int ans;
while(l+1<r)
{
mid=(l+r)>>1;
if(a[mid]-a[st]>x)r=mid;
else l=mid;
}
return l;
}
int main()
{
// freopen("xx.in","r",stdin);
scanf("%d%d",&k,&n);
for(i=1;i<=k;g[0]+=w[i],++i)
scanf("%d",&w[i]);
for(i=1;i<=n;a[i]+=a[i-1],++i)
scanf("%d",&a[i]);
inf=(1<<16)-1;
for(i=1;i<=inf;++i)
{
for(j=1;j<=16;++j)
if(i&1<<j-1)
{
int c=find(f[i-(1<<j-1)],w[j]);
if(c>f[i]||(c==f[i]&g[i-(1<<j-1)]-w[j]>g[i]))
f[i]=c,g[i]=g[i-(1<<j-1)]-w[j];
if(f[i]==n&g[i]>ans)
ans=g[i];
}
}
printf("%d",ans);
}
usaco No Change, 2013 Nov 不找零(二分查找+状压dp)的更多相关文章
- 【BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP
[BZOJ1725][Usaco2006 Nov]Corn Fields牧场的安排 Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M< ...
- bzoj1725 [Usaco2006 Nov]Corn Fields牧场的安排(状压dp)
1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 714 Solved: 502 ...
- [Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP
1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 685 Solved: 383[S ...
- BZOJ 1231 [Usaco2008 Nov]mixup2 混乱的奶牛:状压dp + 滚动数组
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1231 题意: 给你n个数字s[i],问你有多少个排列,使得任意相邻两数字之差的绝对值大于m ...
- BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP
Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧 ...
- bzoj 1231: [Usaco2008 Nov]mixup2 混乱的奶牛【状压dp】
设f[i][j]为奶牛选取状态为i,最后一头选的为j,转移直接f[k][(1<<(k-1)|i]+=f[j][i] #include<iostream> #include< ...
- [BZOJ3312][USACO]不找零(状压DP)
Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身上 ...
- 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分
[BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...
- 没有找零 状压dp
没有找零 状压dp 约翰到商场购物,他的钱包里有K(1 <= K <= 16)个硬币,面值的范围是1..100,000,000.约翰想按顺序买 N个物品(1 <= N <= 1 ...
随机推荐
- DataGridview绑定复杂对象
假设有一个类 class Person { private string id; private string name; private Address homeAddr; public strin ...
- ubuntu安装-Caffe依赖
参考链接:http://my.oschina.net/u/939893/blog/163921 1. 安装numpy相对简单,以下命令可以完成 apt-get install python-numpy ...
- Everything Be True FreeCodeCamp
function every(collection, pre) { // Is everyone being true? for(var i in collection){ if(!collectio ...
- css3媒介查询使用规则小结
响应式布局可以为不同终端的用户提供更加舒适的界面和更好的用户体验,而且随着目前大屏幕移动设备的普及,用大势所趋来形容也不为过. 用一句话来说:使用同一套Html代码来适配不同设备和满足不同场景不同用户 ...
- Linux内核crash/Oops异常定位分析方法
在内核开发的过程中,经常会碰到内核崩溃,比如空指针异常,内存访问越界.通常我们只能靠崩溃之后打印出的异常调用栈信息来定位crash的位置和原因.总结下分析的方法和步骤. 通常oops发生之后,会在串口 ...
- React传递参数的多种方式
最常见的就是父子组件之间传递参数 父组件往子组件传值,直接用this.props就可以实现 在父组件中,给需要传递数据的子组件添加一个自定义属性,在子组件中通过this.props就可以获取到父组件传 ...
- Project Euler 2 Even Fibonacci numbers
题意:斐波那契数列中的每一项都是前两项的和.由1和2开始生成的斐波那契数列前10项为:1, 2, 3, 5, 8, 13, 21, 34, 55, 89, -考虑该斐波那契数列中不超过四百万的项,求其 ...
- BZOJ 1367 [Baltic2004]sequence (可并堆)
题面:BZOJ传送门 题目大意:给你一个序列$a$,让你构造一个递增序列$b$,使得$\sum |a_{i}-b_{i}|$最小,$a_{i},b_{i}$均为整数 神仙题.. 我们先考虑b不递减的情 ...
- Python-基础-day1
一.python的介绍 1.python的出现与应用场景 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯 ...
- 邓_ php SESSION
学会php session可以在很多地方使用,比如做一个后台登录的功能,要让程序记住用户的session,其实很简单,看了下面的文章你就明白了. PHP session用法其实很简单它可以把用户提交的 ...