紫书 例题8-13 UVa 11093 (反证法)
#include<cstdio>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 112345;
int a[MAXN], n;
bool judge(int& pos)
{
int num = 0, sum = 0;
while(num < n && (sum += a[pos]) >= 0) num++, pos = (pos + 1) % n;
return num == n;
}
int main()
{
int T, kase = 0, x;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
REP(i, 0, n) scanf("%d", &a[i]);
REP(i, 0, n) scanf("%d", &x), a[i] -= x;
int start = 0, pos = 0, ok = true;
while(!judge(pos))
{
pos = (pos + 1) % n; //注意这里要+1, 能走到的最远的点一样要舍掉。
if(pos <= start) { ok = false; break;}
start = pos;
}
if(ok) printf("Case %d: Possible from station %d\n", ++kase, start + 1);
else printf("Case %d: Not possible\n", ++kase);
}
return 0;
}
紫书 例题8-13 UVa 11093 (反证法)的更多相关文章
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- 紫书 例题8-12 UVa 12627 (找规律 + 递归)
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...
- 紫书 例题8-4 UVa 11134(问题分解 + 贪心)
这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...
- 紫书 例题8-17 UVa 1609 (构造法)(详细注释)
这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...
- 紫书 例题 9-5 UVa 12563 ( 01背包变形)
总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...
- 紫书 例题 10-2 UVa 12169 (暴力枚举)
就是暴力枚举a, b然后和题目给的数据比较就ok了. 刘汝佳这道题的讲解有点迷,书上讲有x1和a可以算出x2, 但是很明显x2 = (a * x1 +b) 没有b怎么算x2?然后我就思考了很久,最后去 ...
- 紫书 例题 10-26 UVa 11440(欧拉函数+数论)
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...
- 紫书 例题8-2 UVa 11605(构造法)
这道题方法非常的巧妙, 两层的n*n, 第一层第I行全是第I个国家, 第二层的第j列全是第j个国家.这样能符合题目的条件.比如说第1个国家, 在第一层的第一行全是A, 然后在第二层的第一行就有ABCD ...
随机推荐
- C语言基本语法——结构体、联合和枚举
一.结构体 1.什么是结构体 2.结构体语法格式 3.结构体所占内存空间 4.结构体成员赋值 二.联合 1.什么是联合 2.联合语法格式 三.枚举 1.什么是枚举 2.枚举语法格式 一.结构体 1.什 ...
- Extjs获取input值的几种方法
记录一下: ExtJs获取文本框中值的几种方式 EXTHTML 1.Html文本框 如: 获取值的方式为: var tValue = Ext.getDom('test').value; 或者 var ...
- [USACO 2009 Feb Gold] Fair Shuttle (贪心+优先队列)
题目大意:有N个站点的轻轨站,有一个容量为C的列车起点在1号站点,终点在N号站点,有K组牛群,每组数量为Mi(1≤Mi≤N),行程起点和终点分别为Si和Ei(1≤Si<Ei≤N).计算最多有多少 ...
- HDU 1828 Picture (线段树:扫描线周长)
依然是扫描线,只不过是求所有矩形覆盖之后形成的图形的周长. 容易发现,扫描线中的某一条横边对答案的贡献. 其实就是 加上/去掉这条边之前的答案 和 加上/去掉这条边之后的答案 之差的绝对值 然后横着竖 ...
- Hive中的一种假NULL
Hive中有种假NULL,它看起来和NULL一摸一样,但是实际却不是NULL. 例如如下这个查询: hive> desc ljn004; OK a string Time taken ...
- Jquery JS 全局变量
window["a1"]="abc";window["b1"]=5;
- 小学生绞尽脑汁也学不会的python(反射)
小学生绞尽脑汁也学不会的python(反射) 1. issubclass, type, isinstance issubclass 判断xxxx类是否是xxxx类的子类 type 给出xxx的数据类型 ...
- 在 RedHat/CentOS 7.x 中使用 nmcli 命令管理网络
在 RedHat/CentOS 7.x 中使用 nmcli 命令管理网络 学习了:https://linux.cn/article-5410-1.html#3_3613 http://www.linu ...
- 基础数位DP小结
HDU 3555 Bomb dp[i][0] 表示含 i 位数的方案总和. sp[i][0] 表示对于位数为len 的 num 在区间[ 10^(i-1) , num/(10^(len-i)) ] 内 ...
- D3js-绘制地图时出现过小, 设置scale还是无效 的解决方法
使用d3绘制某个地市的地图时,把scale成非常大但是还是无法达到想要的效果. //---------------------------------------------------------- ...