Problem Description

某省自从实行了非常多年的畅通project计划后。最终修建了非常多路。只是路多了也不好,每次要从一个城镇到还有一个城镇时,都有很多种道路方案能够选择。而某些方案要比还有一些方案行走的距离要短非常多。这让行人非常困扰。

如今,已知起点和终点。请你计算出要从起点到终点,最短须要行走多少距离。

Input

本题目包括多组数据,请处理到文件结束。

每组数据第一行包括两个正整数N和M(0< N<200,0 < M<1000),分别代表现有城镇的数目和已修建的道路的数目。

城镇分别以0~N-1编号。

接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B < N,A!=B,0< X <10000),表示城镇A和城镇B之间有一条长度为X的双向道路。

再接下一行有两个整数S,T(0<=S,T < N),分别代表起点和终点。

Output

对于每组数据,请在一行里输出最短须要行走的距离。假设不存在从S到T的路线,就输出-1.

Sample Input

3 3

0 1 1

0 2 3

1 2 1

0 2

3 1

0 1 1

1 2

Sample Output

2

-1

Author

linle

Source

2008浙大研究生复试热身赛(2)——全真模拟

起点到终点的最短路 这里给出3种算法。Floyd。dijkstra和spfa

从提交的代码得速度来看。dijkstra>spfa>Floyd

可是别人都说spfa最快。。。(我就不知道了)

folyd不推荐使用。由于他最慢。,数据大一点的话更不行。

。(只是他最简单)

(1)Floyd

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<stack>
#pragma comment(linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define EPS 1e-6
#define INF (1<<28)
using namespace std; int cost[205][205];
bool used[205];
int n,m;
int d[205];
void floyd()
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cost[i][j]=min(cost[i][j],cost[i][k]+cost[k][j]);
}
int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
int i,j;
for(i=0;i<n;i++)
{
cost[i][i]=0;
for(j=0;j<n;j++)
{
if(i!=j) cost[i][j]=INF;
}
}
int a,b,value,start,endl;
for(i=0;i<m;i++)
{
scanf("%d %d %d",&a,&b,&value);
if(cost[a][b]>value) cost[a][b]=cost[b][a]=value; //多条路的情况。 }
scanf("%d %d",&start,&endl);
floyd();
if(cost[start][endl]!=INF) printf("%d\n",cost[start][endl]);
else printf("-1\n");
}
return 0;
}

2:dijkstra

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<stack>
#pragma comment(linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define EPS 1e-6
#define INF (1<<28)
using namespace std; int cost[205][205];
bool used[205];
int n,m;
int d[205];
void dijkstra(int s)
{
fill(d,d+n,INF);
fill(used,used+n,false);
d[s]=0;
while(true)
{
int v=-1;
for(int u=0;u<n;u++)
{
if(!used[u]&&(v==-1||d[u]<d[v])) v=u;
}
if(v==-1) break;
used[v]=true;
for(int u=0;u<n;u++)
{
d[u]=min(d[u],d[v]+cost[v][u]);
}
}
}
int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
int i,j;
for(i=0;i<n;i++)
{
cost[i][i]=0;
for(j=0;j<n;j++)
{
if(i!=j) cost[i][j]=INF;
}
}
int a,b,value,start,endl;
for(i=0;i<m;i++)
{
scanf("%d %d %d",&a,&b,&value);
if(cost[a][b]>value) cost[a][b]=cost[b][a]=value; //多条路的情况。 }
scanf("%d %d",&start,&endl);
dijkstra(start);
if(d[endl]!=INF) printf("%d\n",d[endl]);
else printf("-1\n");
}
return 0;
}

3:spfa

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<stack>
#pragma comment(linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define EPS 1e-6
#define INF (1<<28)
using namespace std; int cost[205][205];
bool used[205];
int n,m;
int d[205];
void SPFA(int src,int des)
{
int i;
for(i=0;i<n;i++) d[i]=INF;
memset(used,false,sizeof(used)); queue<int> myqueue;
while(!myqueue.empty()) myqueue.pop();//清空队列 d[src]=0;
used[src]=1;
myqueue.push(src);
int tmp;
while(!myqueue.empty())
{
tmp=myqueue.front();
myqueue.pop();
used[tmp]=0;
for(i=0;i<n;i++)
if(d[i]>d[tmp]+cost[tmp][i])
{
d[i]=d[tmp]+cost[tmp][i];
if(!used[i])
{
used[i]=1;
myqueue.push(i);
}
}
}
} int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
int i,j;
for(i=0;i<n;i++)
{
cost[i][i]=0;
for(j=0;j<n;j++)
{
if(i!=j) cost[i][j]=INF;
}
}
int a,b,value,start,endl;
for(i=0;i<m;i++)
{
scanf("%d %d %d",&a,&b,&value);
if(cost[a][b]>value) cost[a][b]=cost[b][a]=value; //多条路的情况。
}
scanf("%d %d",&start,&endl);
SPFA(start,endl);
if(d[endl]!=INF) printf("%d\n",d[endl]);
else printf("-1\n");
}
return 0;
}

hdu1874 畅通project续 最短路 floyd或dijkstra或spfa的更多相关文章

  1. HDU1874畅通project续 dijkstra&amp;&amp;floyd

    畅通project续 http://acm.hdu.edu.cn/showproblem.php?pid=1874 Time Limit: 3000/1000 MS (Java/Others)    ...

  2. hdu1874 畅通project续(求最短路径)

    畅通project续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. HDU 1874 畅通project续 (最短路径)

    畅通project续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  4. hdoj 1874 畅通project续【SPFA】

    畅通project续 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Su ...

  5. HDOJ 1874 畅通project续

    畅通project续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. hdu1874畅通工程续(floyd)

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. HDU1874畅通工程续(floyd||dijkstra)

    看了看floyd和dijkstra,然后就找了两个练习来捉 #include<iostream> #include<stdio.h> #include<string.h& ...

  8. HDU-1874 畅通工程续 (最短路径启蒙题)

    hdu 1874比较基础,拿来练各种刚学会的算法比较好,可以避免好多陷阱,典型的最短路模板题 畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memor ...

  9. hdu 1874 畅通工程续(求最短距离,dijkstra,floyd)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 /************************************************* ...

随机推荐

  1. 20180929 北京大学 人工智能实践:Tensorflow笔记03

    更改的程序部分如下: 另: 难?????????????见链接: https://www.bilibili.com/video/av22530538/?p=17 + (完)

  2. 洛谷P1280 && caioj 1085 动态规划入门(非常规DP9:尼克的任务)

    这道题我一直按照往常的思路想 f[i]为前i个任务的最大空暇时间 然后想不出来怎么做-- 后来看了题解 发现这里设的状态是时间,不是任务 自己思维还是太局限了,题做得太少. 很多网上题解都反着做,那么 ...

  3. 《JSP+Servlet+Tomcat应用开发从零開始学》

    当当网页面:  http://product.dangdang.com/23619990.html 内容简单介绍      本书全面介绍了 JSP开发中涉及的相关技术要点和实战技巧. 全书结构清晰,难 ...

  4. Docker之基础篇

    小白学Docker之基础篇   系列文章: 小白学Docker之基础篇 小白学Docker之Compose 小白学Docker之Swarm PS: 以下是个人作为新手小白学习docker的笔记总结 1 ...

  5. CORS support in Spring Framework--官方

    原文地址:https://spring.io/blog/2015/06/08/cors-support-in-spring-framework For security reasons, browse ...

  6. 利用Eventlog Analyzer分析日志

    利用EventlogAnalyzer分析日志 ManageEngineEventLogAnalyzer是一个基于Web技术.实时的事件监控管理解决方案,能够提高企业网络安全.减少工作站和服务器的宕机事 ...

  7. Android CardView卡片布局 标签: 控件

    CardView介绍 CardView是Android 5.0系统引入的控件,相当于FragmentLayout布局控件然后添加圆角及阴影的效果:CardView被包装为一种布局,并且经常在ListV ...

  8. AtCoderAGC003D Anticube

    Description: 给定一个序列\(a\),要求选出最多的序列元素并保证两两元素的乘积不为立方数 Solution: 我们考虑哪些因子是有用的,如果一个因子的指数\(>3\),我们可以将他 ...

  9. CSUOJ 1637 Yet Satisfiability Again!

    1637: Yet Satisfiability Again! Time Limit: 5 Sec  Memory Limit: 128 MB Description Alice recently s ...

  10. POJ 2352 Stars(线段树)

    题目地址:id=2352">POJ 2352 今天的周赛被虐了. . TAT..线段树太渣了..得好好补补了(尽管是从昨天才開始学的..不能算补...) 这题还是非常easy的..维护 ...