Best Time to Buy and Sell Stock系列
I题
Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Subscribe to see which companies asked this question
解答:
采用动态规划解法,遍历数组更新当前最小值,并用当前值减去最小值与当前最大利润进行比较,更新最大利润。
public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length == 0) {
return 0;
}
int min = Integer.MAX_VALUE;
int profit = 0;
for (int i : prices) {
min = Math.min(min, i);
profit = Math.max(i - min, profit);
}
return profit;
}
}
II
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Subscribe to see which companies asked this question
解答:
采用贪心算法,记录相邻两天的差值,大于零则加到利润总量中。(本题满足贪心算法可以得到最优解的特性是重点)
public class Solution {
public int maxProfit(int[] prices) {
int profit = 0;
for (int i = 0; i < prices.length - 1; i++) {
int pro = prices[i + 1] - prices[i];
if (pro > 0) {
profit += pro;
}
}
return profit;
}
}
Best Time to Buy and Sell Stock with Cooldown
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:
- You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
- After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
Example:
prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]
解答:
设置三个数组,buy sell和rest。
buy[i]表示第i天以buy状态结束时至今可以获得的最大profit;
sell[i]表示第i天以sell状态结束至今可以获得的最大profit;
rest[i]表示第i天以rest状态结束至今可以获得的最大profit。
根据定义可得:
buy[i] = max(rest[i-1]-price, buy[i-1]) //前者表示在前一天rest的情况下今天购入,后者表示在前一天处于buy状态的情况下保持buy状态(即不操作)
sell[i] = max(buy[i-1]+price, sell[i-1]) //前者表示在前一天处于buy状态的情况下今天卖出,后者表示前一天已经处于sell状态的情况下保持sell状态(即不操作)
rest[i] = max(sell[i-1], buy[i-1], rest[i-1]) //rest表示没有任何操作,所以其值应为前一天处于sell,buy和rest状态中的最大值
上述等式考虑了两个规则,即buy必须在rest之后,sell必须在buy之后,由一式和二式可以得到。但还有一个特殊情况[buy,rest,buy]需要考虑,从上述三式不能明显得出这种特殊情况不存在。
由buy[i] <= rest[i],故rest[i] = max(sell[i-1], rest[i-1]),由此式可以得到[buy,rest,buy]不可能发生。
由rest[i] <= sell[i],故rest[i] = sell[i-1]。
于是上述三个等式可以化为两个:
buy[i] = max(sell[i-2]-price, buy[i-1])
sell[i] = max(buy[i-1]+price, sell[i-1])
第i天状态只和第i-1天和i-2天有关,所以空间可以由O(n)缩小为O(1)。
具体代码如下:
public int maxProfit(int[] prices) {
int sell = 0, prev_sell = 0, buy = Integer.MIN_VALUE, prev_buy;
for (int price : prices) {
prev_buy = buy;
buy = Math.max(prev_sell - price, prev_buy);
prev_sell = sell;
sell = Math.max(prev_buy + price, prev_sell);
}
return sell;
}
III
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
问题分析:
最初的想法是在prices数组中寻找一个分割点,把数组分割为两部分。然后利用第一个问题的方法去分别寻找两部分的结果,将结果相加,得出的最大结果即为最终的最大利润。代码如下:
public class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int rst = 0;
for (int i = 0; i < n; i++) {
int temp = helper(prices, 0, i) + helper(prices, i + 1, n - 1);
if (rst < temp) {
rst = temp;
}
}
return rst;
}
public int helper(int[] prices, int i, int j) {
if (i > j) return 0;
int min = Integer.MAX_VALUE;
int rst = 0;
for (int k = i; k <= j; k++) {
min = Math.min(prices[k], min);
rst = Math.max(prices[k] - min, rst);
}
return rst;
}
}
这段代码在lintcode上通过了所有test case,但是在leetcode上超时了。时间复杂度为O(n^2).
利用数组dp[k][i]来表示以在prices下标i之前(包含i)进行k次交易得到的最大利润。则可以得到递推公式为
dp[k][i] = max(dp[k][i - 1], max(dp[k - 1][j] + prices[i] - prices[j])), 其中j的取值范围为[0, i - 1].
= max(dp[k][i - 1], prices[i] + max(dp[k -1][j] - prices[j]))
= max(dp[k][i - 1], prices[i] + max(prev[k - 1])), 在内层循环中只需要每次更新这个值即可。
根据实际意义,dp[0][i]和dp[i][0]均为0.
具体代码如下:
public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= 1) return 0;
int k = 2;
int[][] dp = new int[k + 1][prices.length];
for (int t = 1; t <= k; t++) {
int tmp = Integer.MIN_VALUE;
for (int i = 1; i < prices.length; i++) {
tmp = Math.max(tmp, dp[t - 1][i - 1] - prices[i - 1]);
dp[t][i] = Math.max(dp[t][i - 1], prices[i] + tmp);
}
}
return dp[k][prices.length - 1];
}
}
问题优化:
考虑此时能否把二维数组简化为一维数组,发现tmp既与i的上一个状态有关,还与t的上一个状态有关。此时不方便简化。
仔细分析发现在递推公式dp[k][i] = max(dp[k][i - 1], max(dp[k - 1][j] + prices[i] - prices[j]))中j取i时也可行。也就意味着在内部循环式变为
1)tmp = Math.max(tmp, dp[t - 1][i] - prices[i])
2)dp[t][i] = Math.max(dp[t][i - 1], prices[i] + tmp)
此时将数组简化为一维数组dp[i]每次用i - 1的状态更新i的状态即可,具体代码如下:
public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= 1) return 0;
int k = 2;
int[] dp = new int[prices.length];
for (int t = 1; t <= k; t++) {
int tmp = dp[0] - prices[0];
for (int i = 1; i < prices.length; i++) {
tmp = Math.max(tmp, dp[i] - prices[i]);
dp[i] = Math.max(dp[i - 1], prices[i] + tmp);
}
}
return dp[prices.length - 1];
}
}
进一步优化:
考虑问题的继续优化,dp[i]只与dp[i - 1]有关,并且k = 2时外层循环只有两次,所以只需要四个变量来记录变化即可。
此时只需要对prices进行遍历,更新这四个变量即可。具体意义为:
1)buy1:当前购买了第一支股票的最大获利;
2)sell1:当前售出了第一支股票的最大获利;
3)buy2:当前购买了第二支股票的最大获利;
4)sell2:当前售出了第二支股票的最大获利。
public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= 1) return 0;
int buy1 = Integer.MIN_VALUE;
int buy2 = Integer.MIN_VALUE;
int sell1 = 0;
int sell2 = 0;
for (int i : prices) {
buy1 = Math.max(buy1, - i);
sell1 = Math.max(sell1, i + buy1);
buy2 = Math.max(buy2, sell1 - i);
sell2 = Math.max(sell2, i + buy2);
}
return sell2;
}
}
IV
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
问题解答:
这里用III中的普适方法会有一个test case出现MLE的问题,原因是k值过大。在这里对于k值比二分之一数组长度大时,问题可以简化为问题II。采用quickSolve方法解决此时的问题,代码如下:
public class Solution {
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length <= 1) return 0;
if (k >= prices.length / 2) return quickSolve(prices);
int[][] dp = new int[k + 1][prices.length];
for (int t = 1; t <= k; t++) {
int tmp = dp[t - 1][0] - prices[0];
for (int i = 1; i < prices.length; i++) {
dp[t][i] = Math.max(dp[t][i - 1], prices[i] + tmp);
tmp = Math.max(tmp, dp[t - 1][i] - prices[i]);
}
}
return dp[k][prices.length - 1];
}
public int quickSolve(int[] prices) {
int rst = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
rst += prices[i] - prices[i - 1];
}
}
return rst;
}
}
Best Time to Buy and Sell Stock系列的更多相关文章
- LeetCode -- Best Time to Buy and Sell Stock系列
Question: Best Time to Buy and Sell Stock Say you have an array for which the ith element is the pri ...
- Java for LeetCode 188 Best Time to Buy and Sell Stock IV【HARD】
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- 【LeetCode】Best Time to Buy and Sell Stock IV
Best Time to Buy and Sell Stock IV Say you have an array for which the ith element is the price of a ...
- [leetcode]_Best Time to Buy and Sell Stock I && II
一个系列三道题,我都不会做,google之答案.过了两道,第三道看不懂,放置,稍后继续. 一.Best Time to Buy and Sell Stock I 题目:一个数组表示一支股票的价格变换. ...
- Maximum Subarray / Best Time To Buy And Sell Stock 与 prefixNum
这两个系列的题目其实是同一套题,可以互相转换. 首先我们定义一个数组: prefixSum (前序和数组) Given nums: [1, 2, -2, 3] prefixSum: [0, 1, 3, ...
- 【一天一道LeetCode】#122. Best Time to Buy and Sell Stock II
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Say you ...
- [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
随机推荐
- 杭电2000——ASCII码排序
/* ASCII码排序 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- 【UWP】FFmpeg库的编译
本文是关于windows8.1/windows10通用应用下编译ffmpeg的一些需要注意的地方,针对最新的msys2而写,都是我在实际操作中遇到的,但是网上没有提到的.如果大家遇到什么问题或是在之前 ...
- .NET Core跨平台:使用.NET Core开发一个初心源商城总括
1..NET Core基本介绍 a 作为一个.NET的开发者,在以前的开发中,我们开发的项目基本都是部署在windows服务器上,但是在windows服务器上的话某些比较流行的解决访问量的方案基本都是 ...
- 解决项目中找不到Maven Dependencies
项目中找不到Maven Dependencies 正常的Maven项目应该是这样的 自己的项目中却没有Maven Dependencies,自己百度了, 发现解决不了,最后发现在.classpath和 ...
- ADO.net参数化查询陷阱
避免SQL漏洞注入攻击,往往采用的是参数化查询!然而在使用参数化查询中,往往为了方便就直接通过构造方法来进行数据的初始化了,然而这样就引发一个这样的问题,当参数值为0时,就出现参数为空的情况了. 一. ...
- 开始了大概三四天的Rails学习之路
最近因为一位极光推送朋友,我开始了大概三四天的Rails学习之路,最终达到的水平是可以比较轻松地做出大部分功能,然后自我感觉可以自如地按照Rails的设计思想去思考.由于编程的日益流行,我结识了越来越 ...
- JavaWeb之MVC模式
一.什么是MVC设计模式? MVC模式(Model-View-Controller)是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model).视图(View)和控制器(Contr ...
- 徒手用Java来写个Web服务器和框架吧<第二章:Request和Response>
徒手用Java来写个Web服务器和框架吧<第一章:NIO篇> 接上一篇,说到接受了请求,接下来就是解析请求构建Request对象,以及创建Response对象返回. 多有纰漏还请指出.省略 ...
- Vuex 学习总结
好在之前接触过 flux,对于理解 vuex 还是很有帮助的.react 学到一半,后来因为太忙,就放弃了,现在也差不多都忘记了.不过感觉 vuex 还是跟 flux 还是有点区别的. 对于很多新手来 ...
- 深入JSP学习
常规JSP JSP页面最终会由容器来生成Servlet类的,比如Tomcat容器生成JSP的Servlet类放在work目录里.因此在JSP里可以用很多简化的语法供容器使用,这篇就来整理一下. JSP ...