[bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
Solution
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 50010
#define Eps 1e-18 using namespace std; struct Liyn{
int k, b, pos; void Push(int i) {scanf("%d%d", &k, &b); pos = i;} bool operator == (const Liyn &a)const {return k == a.k;} bool operator < (const Liyn &a)const {return k < a.k || (k == a.k && b > a.b);} double Cmp(const Liyn &a) {return double(a.b - b) / double(k - a.k);}
}L[MAXN], _pb[MAXN]; int n, top, ans[MAXN]; int main(){
scanf("%d", &n);
for(int i = ; i < n; i++)
L[i].Push(i);
sort(L, L + n);
n = unique(L, L + n) - L;
for(int i = ; i < n; i++){
while(top > && _pb[top - ].Cmp(_pb[top - ]) > L[i].Cmp(_pb[top - ]) - Eps)top--;
_pb[top++] = L[i];
}
for(int i = ; i < top; i++)
ans[i] = _pb[i].pos;
sort(ans, ans + top);
for(int i = ; i < top; i++)
printf("%d ", ans[i] + );
return ;
}
[bzoj1007][HNOI2008][水平可见直线] (斜率不等式)的更多相关文章
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
- bzoj1007[HNOI2008]水平可见直线
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向 ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
随机推荐
- 给ListView设置emptyView
给ListView设置emptyView 版权声明:本文为博主原创文章,未经博主允许不得转载. 使用ListView和GridView时,当列表为空时,默认是不显示任何内容的,这样对用户非常不友好,这 ...
- Lucene的评分(score)机制研究
首先,需要学习Lucene的评分计算公式—— 分值计算方式为查询语句q中每个项t与文档d的匹配分值之和,当然还有权重的因素.其中每一项的意思如下表所示: 表3.5 评分公式中的因子 评分因子 描 述 ...
- 网站实现微信登录之嵌入二维码——基于yii2开发的描述
之前写了一篇yii2获取登录前的页面url地址的文章,然后发现自己对于网站实现微信扫码登录功能的实现不是很熟悉,所以,我会写2-3篇的文章来描述下一个站点如何实现微信扫码登录的功能,来复习下微信扫码登 ...
- 总结:如何使用redis缓存加索引处理数据库百万级并发
前言:事先说明:在实际应用中这种做法设计需要各位读者自己设计,本文只提供一种思想.准备工作:安装后本地数redis服务器,使用mysql数据库,事先插入1000万条数据,可以参考我之前的文章插入数据, ...
- doT js 模板引擎【初探】要优雅不要污
js中拼接html,总是感觉不够优雅,本着要优雅不要污,决定尝试js模板引擎. JavaScript 模板引擎 JavaScript 模板引擎作为数据与界面分离工作中最重要一环,越来越受开发者关注. ...
- intellij idea Jdk编译设置
Idea加载多项目时因为不同JDK,经常出现JDK编译版本的问题,容易出现以下异常. 一.异常信息: Information:Using javac 1.8.0_91 to compile java ...
- Maven远程仓库的配置
在很多情况下,默认的中央仓库无法满足项目的需求,可能项目需要的构件存在于另外一个远程仓库中,如JBoss Maven仓库.这时,可以在POM中配置该仓库,见代码如下: <!-- 远程仓库的配置 ...
- JavaScript 常用代码
未知对象 对象类型名称:xobject.constructor.name 对象成员键名:Object.keys(xobject) 枚举对象成员及其值:for(var propertyName in r ...
- 【代码笔记】iOS-正方形转换
一,工程图. 二,代码. RootViewControlle.m //点击任何处,页面翻转 -(void)touchesBegan:(NSSet *)touches withEvent:(UIEven ...
- IOS 杂笔-15(知识小点 readonly)
readonly是我们并不陌生的属性. 但是他也有值得我们注意的地. 属性如其名-只读-也就是说我们只能读取-不能进行写操作 当我们尝试进行写操作时会如下 但是这并不意味着我们不可以改变其内部的属性 ...