[bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
Solution
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 50010
#define Eps 1e-18 using namespace std; struct Liyn{
int k, b, pos; void Push(int i) {scanf("%d%d", &k, &b); pos = i;} bool operator == (const Liyn &a)const {return k == a.k;} bool operator < (const Liyn &a)const {return k < a.k || (k == a.k && b > a.b);} double Cmp(const Liyn &a) {return double(a.b - b) / double(k - a.k);}
}L[MAXN], _pb[MAXN]; int n, top, ans[MAXN]; int main(){
scanf("%d", &n);
for(int i = ; i < n; i++)
L[i].Push(i);
sort(L, L + n);
n = unique(L, L + n) - L;
for(int i = ; i < n; i++){
while(top > && _pb[top - ].Cmp(_pb[top - ]) > L[i].Cmp(_pb[top - ]) - Eps)top--;
_pb[top++] = L[i];
}
for(int i = ; i < top; i++)
ans[i] = _pb[i].pos;
sort(ans, ans + top);
for(int i = ; i < top; i++)
printf("%d ", ans[i] + );
return ;
}
[bzoj1007][HNOI2008][水平可见直线] (斜率不等式)的更多相关文章
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
- bzoj1007[HNOI2008]水平可见直线
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向 ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
随机推荐
- 浅谈系列之 javascript原型与对象
在我学习与使用javascript三个月中,我一直对javascript的继承关系以及prototype理解不清,导致很多时候为什么这么用说不出个所以然来.截止到本周为止,通过之前的学习以及自己的再学 ...
- 前端MVC学习总结(二)——AngularJS验证、过滤器、指令
一.验证 angularJS中提供了许多的验证指令,可以轻松的实现验证,只需要在表单元素上添加相应的ng属性,常见的如下所示: <input Type="text" ng-m ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
- 读书笔记--SQL必知必会09--汇总数据
9.1 聚集函数 聚集函数(aggregate function),对某些行运行的函数,计算并返回一个值. 使用聚集函数可以汇总数据而不必将涉及的数据实际检索出来. 可利用标准的算术操作符,实现更高级 ...
- 读书笔记--SQL必知必会11--使用子查询
11.1 子查询 查询(query),任何SQL语句都是查询.但此术语一般指SELECT语句. SQL还允许创建子查询(subquery),即嵌套在其他查询中的查询. 作为子查询的SELECT语句只能 ...
- Intellij Idea 15 下新建 Hibernate 项目以及如何添加配置
1.说明:Idea 下,项目对应于 Eclipse 下的 workspace,Module 对应于 Eclipse 下的项目.Idea 下,新添加的项目既可以单独作为一个 Project,也可以作为一 ...
- 数据库进阶之路(五) - MySQL行锁深入研究
由于业务逻辑的需要,必须对数据表的一行或多行加入行锁,举个最简单的例子,图书借阅系统:假设id=1的这本书库存为1,但是有2个人同时来借这本书,此处的逻辑为: ; --如果restnum大于0,执行u ...
- Get radio selected value
先看下面 foreach得到的radio list: 现在想实现把选择的选项值Post至服务端:
- svn+teamcity+YouTrack+Upsource搭建—写给明天工作室的小伙伴
首先解释下概念: SVN:Subversion的简称,版本控制系统.采用集中式管理(本地只保留服务器仓储的副本,想要把代码交到服务器或者看提交记录.差异对比就必须得有网络连接) Teamcity:可持 ...
- Web报表工具FineReport的JS开发之字符串
在报表开发过程中,有些需求可能无法通过现有的功能来实现,需要开发人员二次开发,以FineReport为例,可以使用网页脚本.API接口等进行深入的开发与控制. 考虑到JS脚本开发的使用较多,这里先先简 ...