tf.train.ExponentialMovingAverage
decay= min(decay,(1+steps)/(10+steps))
注:(吴恩达讲的修正方法是用计算出来的shadow_variable除以(1-beta^t),其中beta即为上面的decay_rate, 其中t越大,括号里的值越接近1,因为beta是一个小于1的数)
import tensorflow as tf
v = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(0, trainable=False)
ema = tf.train.ExponentialMovingAverage(0.9, step)
maintain_average = ema.apply([v])
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init) #print initial value
print(sess.run([v, ema.average(v)])) sess.run(tf.assign(v, 5))
sess.run(maintain_average)
print(sess.run([v, ema.average(v)])) sess.run(tf.assign(v, 5))
sess.run(maintain_average)
print(sess.run([v, ema.average(v)]))
[0.0, 0.0]
[5.0, 4.5]
[5.0, 4.9499998]
tf.train.ExponentialMovingAverage的更多相关文章
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
- tensorflow 下的滑动平均模型 —— tf.train.ExponentialMovingAverage
在采用随机梯度下降算法训练神经网络时,使用 tf.train.ExponentialMovingAverage 滑动平均操作的意义在于提高模型在测试数据上的健壮性(robustness). tenso ...
- deep_learning_Function_tf.train.ExponentialMovingAverage()滑动平均
近来看batch normalization的代码时,遇到tf.train.ExponentialMovingAverage()函数,特此记录. tf.train.ExponentialMovingA ...
- tf.train.shuffle_batch函数解析
tf.train.shuffle_batch (tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=No ...
- 图融合之加载子图:Tensorflow.contrib.slim与tf.train.Saver之坑
import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np impor ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读
1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...
- 深度学习原理与框架-Tfrecord数据集的制作 1.tf.train.Examples(数据转换为二进制) 3.tf.image.encode_jpeg(解码图片加码成jpeg) 4.tf.train.Coordinator(构建多线程通道) 5.threading.Thread(建立单线程) 6.tf.python_io.TFR(TFR读入器)
1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Featur ...
- 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...
随机推荐
- Python filter用法
class filter(object) | filter(function or None, iterable) --> filter object | | Return an iterato ...
- 利用win10自带的系统配置禁止开机启动项和程序
一.利用win10自带的系统配置禁止开机启动项和程序 首先打开"运行"对话框,可以通过开始菜单打开运行,也可以按下快捷键WIN+R打开"运行".如下图. ...
- Python datetime之timedelta
该函数表示两个时间的间隔 参数可选.默认值都为0:datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minut ...
- 分享如何将git项目导入GitHub(附创建分支)
前言:我们应该很多都会有自己的私有项目,大多情况都是存放在自己的硬盘中,今天我分享一下怎么讲自己的私有项目更新到GitHub上,这样再也不用担心项目丢失了. 一:下载git 下载链接git链接,根据自 ...
- Python文件夹备份
Python文件夹备份 import os,shutil def file_copy(path1,path2): f2 = [filename1 for filename1 in os.listdir ...
- middlewares in GCC
Our GCC is a project developed by React that makes it painless to create interactive UIs. Design sim ...
- riot.js教程【四】Mixins、HTML内嵌表达式
前文回顾 riot.js教程[三]访问DOM元素.使用jquery.mount输入参数.riotjs标签的生命周期: riot.js教程[二]组件撰写准则.预处理器.标签样式和装配方法: riot.j ...
- [转载] OAuth2.0认证和授权原理
转载自http://www.tuicool.com/articles/qqeuE3 什么是OAuth授权? 一.什么是OAuth协议 OAuth(开放授权)是一个开放标准,允许第三方网站在用户授权的前 ...
- 自动化部署必备技能—部署yum仓库、定制rpm包
部署yum仓库.定制rpm包 目录 第1章 扩展 - yum缓存 1.1 yum缓存使用步骤... 1 1.1.1 导言... 1 1.1.2 修改配置文件... 1 1.1.3 使用缓存... 1 ...
- linux操作系统基础篇(五)
Linux网络以及rpm安装yum源的配置 1.Linux网络 1. 使用ifconfig命令来维护网络1) fconfig命令的功能:显示所有正在启动的网卡的详细信息或设定系统中网卡的IP地址.2) ...