贝叶斯来理解高斯混合模型GMM
最近学习基础算法《统计学习方法》,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适。
首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉。本文将GMM用于聚类来举例。
除了简单的高斯分布,理论上通过组合多个不同的高斯分布可以构成任意复杂的分布函数。如下图所示:
在最大似然,贝叶斯方法与朴素贝叶斯分类中,2.1中提到高斯概率密度用来计算连续变量情况下的朴素贝叶斯概率。该情况下的高斯分布是训练已知,然后对于输入变量求取其概率密度,结合类别的先验概率从而进一步实现分类。
而利用高斯混合模型进行聚类,本质上可以这么理解:数据的分布由若干高斯分布组合而成,需要通过传入的无标记数据,求解出各个高斯模型的参数和各个模型的先验概率!不同于一般利用最大似然估计参数的情况在于。由于传入的数据无标记,也就是说缺少了观测数据的类别这个隐藏信息,所以这个隐藏信息的概率分布也成了估计内容之一,从而无法通过求偏导进行梯度下降来求解,于是利用了EM来进行(EM算法就是利用最大化似然函数的下界来迭代求解)。
不同于K-Means聚类算法直接把每一个数据点的归类,高斯混合模型求解出的的分布密度,然后一般归类为最大后验概率一类。
参考:
李航《统计学习方法》
贝叶斯来理解高斯混合模型GMM的更多相关文章
- 遵循统一的机器学习框架理解高斯混合模型(GMM)
遵循统一的机器学习框架理解高斯混合模型(GMM) 一.前言 我的博客仅记录我的观点和思考过程.欢迎大家指出我思考的盲点,更希望大家能有自己的理解. 本文参考了网络上诸多资料,特别是B站UPshuhua ...
- EM算法和高斯混合模型GMM介绍
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...
- 6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...
- 5. EM算法-高斯混合模型GMM+Lasso
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...
- 4. EM算法-高斯混合模型GMM详细代码实现
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...
- 3. EM算法-高斯混合模型GMM
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...
- 高斯混合模型GMM与EM算法的Python实现
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...
- Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法: (1)K-means (2)Latent Dirichlet allocation (LDA) ...
- 高斯混合模型 GMM
本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) = \frac{\sum_{i=1}^N( X_ ...
随机推荐
- Python面向对象篇之元类,附Django Model核心原理
关于元类,我写过一篇,如果你只是了解元类,看下面这一篇就足够了. Python面向对象之类的方法和属性 本篇是深度解剖,如果你觉得元类用不到,呵呵,那是因为你不了解Django. 在Python中有一 ...
- 检测CSS属性 是否支持
原理是:创建一个节点,判断其的style属性是否含有textOverflow属性,有则进一步判断是否支持ellipsis这个值.当遇到不支持的属性值时,浏览器会直接把这个值抛弃.因此这里就可以先给te ...
- Linux系列教程(十六)——Linux权限管理之ACL权限
通过前面的两篇博客我们介绍了Linux系统的用户管理,Linux用户和用户组管理之相关配置文件 讲解了用户管理的相关配置文件,包括用户信息文件/etc/passwd,用户密码文件/etc/shadow ...
- DNA序列对齐问题
问题描述: 该问题在算法导论中引申自求解两个DNA序列相似度的问题. 可以从很多角度定义两个DNA序列的相似度,其中有一种定义方法就是通过序列对齐的方式来定义其相似度. 给定两个DNA序列A和B,对齐 ...
- python基础阶段 经典练习题 拾英札记(3)
对于编程学习来说,动手操练和重复训练很重要. 因为这是一个注重实践的活,最终要下笔落字. 更何况,即使你看了很多博客,听了很多课,你脑中的认识和手指下的-屏幕上的反馈,逻辑上是两个维度-两个载体的,中 ...
- 关于 innodb_stats_on_metadata 的设置问题
[问题背景] 线上使用osc进行表修改的时候出现SQL执行过长被kill的问题
- 69、django之Form组件
本篇导航: 小试牛刀 Form类 常用选择插件 自定义验证规则 初始化数据 Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次 ...
- C#设计模式之十五命令模式(Command Pattern)【行为型】
一.引言 今天我们开始讲"行为型"设计模式的第二个模式,该模式是[命令模式],又称为行动(Action)模式或交易(Transaction)模式,英文名称是:Command P ...
- 原码、反码、补码的正(nao)确(can)打开方式
我们知道日常生活中使用的数分为整数和实数,整数的小数点固定在数的最右边,可以省略不写,而实数的小数点则不固定.在计算机中只能识别和表示“0”和“1”,而无法识别小数点,因此要想使得计算机能够处理日常使 ...
- SHA1 安全哈希算法(Secure Hash Algorithm)
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signatu ...