There are N students in a class. Some of them are friends, while some are not. Their friendship is transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C, then A is an indirect friend of C. And we defined a friend circle is a group of students who are direct or indirect friends.

Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j] = 1, then the ithand jth students are direct friends with each other, otherwise not. And you have to output the total number of friend circles among all the students.

Example 1:

Input:
[[1,1,0],
[1,1,0],
[0,0,1]]
Output: 2
Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
The 2nd student himself is in a friend circle. So return 2.

Example 2:

Input:
[[1,1,0],
[1,1,1],
[0,1,1]]
Output: 1
Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends,
so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.

Note:

  1. N is in range [1,200].
  2. M[i][i] = 1 for all students.
  3. If M[i][j] = 1, then M[j][i] = 1.

这道题让我们求朋友圈的个数,题目中对于朋友圈的定义是可以传递的,比如A和B是好友,B和C是好友,那么即使A和C不是好友,那么他们三人也属于一个朋友圈。那么比较直接的解法就是 DFS 搜索,对于某个人,遍历其好友,然后再遍历其好友的好友,那么就能把属于同一个朋友圈的人都遍历一遍,同时标记出已经遍历过的人,然后累积朋友圈的个数,再去对于没有遍历到的人在找其朋友圈的人,这样就能求出个数。其实这道题的本质是之前那道题 Number of Connected Components in an Undirected Graph,其实许多题目的本质都是一样的,就是看我们有没有一双慧眼能把它们识别出来:

解法一:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = ;
vector<bool> visited(n, false);
for (int i = ; i < n; ++i) {
if (visited[i]) continue;
helper(M, i, visited);
++res;
}
return res;
}
void helper(vector<vector<int>>& M, int k, vector<bool>& visited) {
visited[k] = true;
for (int i = ; i < M.size(); ++i) {
if (!M[k][i] || visited[i]) continue;
helper(M, i, visited);
}
}
};

我们也可以用 BFS 来遍历朋友圈中的所有人,解题思路和上面大同小异,参见代码如下:

解法二:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = ;
vector<bool> visited(n, false);
queue<int> q;
for (int i = ; i < n; ++i) {
if (visited[i]) continue;
q.push(i);
while (!q.empty()) {
int t = q.front(); q.pop();
visited[t] = true;
for (int j = ; j < n; ++j) {
if (!M[t][j] || visited[j]) continue;
q.push(j);
}
}
++res;
}
return res;
}
};

下面这种解法叫联合查找 Union Find,也是一种很经典的解题思路,在之前的两道道题 Graph Valid Tree 和 Number of Connected Components in an Undirected Graph 中也有过应用,核心思想是初始时给每一个对象都赋上不同的标签,然后对于属于同一类的对象,在 root 中查找其标签,如果不同,那么将其中一个对象的标签赋值给另一个对象,注意 root 数组中的数字跟数字的坐标是有很大关系的,root 存的是属于同一组的另一个对象的坐标,这样通过 getRoot 函数可以使同一个组的对象返回相同的值,参见代码如下:

解法三:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = n;
vector<int> root(n);
for (int i = ; i < n; ++i) root[i] = i;
for (int i = ; i < n; ++i) {
for (int j = i + ; j < n; ++j) {
if (M[i][j] == ) {
int p1 = getRoot(root, i);
int p2 = getRoot(root, j);
if (p1 != p2) {
--res;
root[p2] = p1;
}
}
}
}
return res;
}
int getRoot(vector<int>& root, int i) {
while (i != root[i]) {
root[i] = root[root[i]];
i = root[i];
}
return i;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/547

类似题目:

Accounts Merge

Redundant Connection II

Redundant Connection

Number of Islands II

Graph Valid Tree

Number of Connected Components in an Undirected Graph

Similar String Groups

参考资料:

https://leetcode.com/problems/friend-circles/

https://leetcode.com/problems/friend-circles/discuss/101440/c-bfs

https://leetcode.com/problems/friend-circles/discuss/101338/Neat-DFS-java-solution

https://leetcode.com/problems/friend-circles/discuss/101387/Easy-Java-Union-Find-Solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Friend Circles 朋友圈的更多相关文章

  1. [LeetCode] 547. Friend Circles 朋友圈

    There are N students in a class. Some of them are friends, while some are not. Their friendship is t ...

  2. LeetCode 547. Friend Circles 朋友圈(C++/Java)

    题目: https://leetcode.com/problems/friend-circles/ There are N students in a class. Some of them are ...

  3. [LeetCode]547. Friend Circles朋友圈数量--不相邻子图问题

    /* 思路就是遍历所有人,对于每一个人,寻找他的好友,找到好友后再找这个好友的好友 ,这样深度优先遍历下去,设置一个flag记录是否已经遍历了这个人. 其实dfs真正有用的是flag这个变量,因为如果 ...

  4. 547 Friend Circles 朋友圈

    班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集合.给 ...

  5. 【LeetCode】547. 朋友圈

    题目 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集 ...

  6. Leetcode547: Friend Circles 朋友圈问题

    问题描述 在一个班级里有N个同学, 有些同学是朋友,有些不是.他们之间的友谊是可以传递的比如A和B是朋友,B和C是朋友,那么A和C也是朋友.我们定义 friend circle为由直接或者间接都是朋友 ...

  7. Leetcode之深度优先搜索(DFS)专题-547. 朋友圈(Friend Circles)

    Leetcode之深度优先搜索(DFS)专题-547. 朋友圈(Friend Circles) 深度优先搜索的解题详细介绍,点击 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递 ...

  8. [Swift]LeetCode547. 朋友圈 | Friend Circles

    There are N students in a class. Some of them are friends, while some are not. Their friendship is t ...

  9. [LeetCode]547. 朋友圈(DFS)

    题目 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集 ...

随机推荐

  1. [刷题]Codeforces 785D - Anton and School - 2

    Description As you probably know, Anton goes to school. One of the school subjects that Anton studie ...

  2. python 基本数据类型set

    set 是一个无序且不重复的序列 set 是一个无序且不重复的序列 set 不允许重复的集合.set不允许重复的序列 1.创建 s=set() #创建空集合只能用这种方法 s={11,222,233, ...

  3. 前端架构之路:使用Vue.js开始第一个项目

    Vue.js做为目前前端最热门的库之一,为快速构建并开发前端项目多了一种思维模式.本文通过一个简单的实例开始上手Vue.js开发.   一.技术准备 笔者建议在开始项目前,对以下两个技术点进行了解. ...

  4. 使用Dockerfile构建镜像-Docker for Web Developers(5)

    1.理解Dockerfile语法 语法命令 命令功能 举例 FROM 所有的dockerfile都必须以FROM命令指定镜像基于哪个基础镜像来制作 FROM ubuntu:14:04 MAINTAIN ...

  5. 微信小程序实战(商城)

    github地址(欢迎star):https://github.com/xiaobinwu/dj 版本:0.15.152900(暂未升级原因:升级后需要图片无法本地引用,必须使用image或是远程路径 ...

  6. Spring Mvc 用Demo去学习

    1:首先大体知道 SpringMVC 框架的 运行原理(图片来自网络 ) 2:SpringMVC 是依照DispatcherServlet 展开的 这里可以约Structs2对比,structs2 是 ...

  7. HIVE安装配置

    Hive简介 Hive 基本介绍 Hive 实现机制 Hive 数据模型 Hive 如何转换成MapReduce Hive 与其他数据库的区别 以上详见:https://chu888chu888.gi ...

  8. Docker 镜像小结 - 每天5分钟玩转 Docker 容器技术(21)

    本节我们对 Docker 镜像做个小结. 这一部分我们首先讨论了镜像的分层结构,然后学习了如何构建镜像,最后实践使用 Docker Hub 和本地 registry. 下面是镜像的常用操作子命令: i ...

  9. javascript基础-语法

    代表此属性ECMAScript 5(一般IE9+)才支持. 图解:—— 图解: undefined,null,NaN Infinity ECMAScript 5禁止修改 每个函数都是Function的 ...

  10. WebSocket和kafka实现数据实时推送到前端

    一. 需求背景      最近新接触一个需求,需要将kafka中的数据实时推送到前端展示.最开始想到的是前端轮询接口数据,但是无法保证轮询的频率和消费的频率完全一致,或造成数据缺失等问题.最终确定用利 ...