There are N students in a class. Some of them are friends, while some are not. Their friendship is transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C, then A is an indirect friend of C. And we defined a friend circle is a group of students who are direct or indirect friends.

Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j] = 1, then the ithand jth students are direct friends with each other, otherwise not. And you have to output the total number of friend circles among all the students.

Example 1:

Input:
[[1,1,0],
[1,1,0],
[0,0,1]]
Output: 2
Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
The 2nd student himself is in a friend circle. So return 2.

Example 2:

Input:
[[1,1,0],
[1,1,1],
[0,1,1]]
Output: 1
Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends,
so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.

Note:

  1. N is in range [1,200].
  2. M[i][i] = 1 for all students.
  3. If M[i][j] = 1, then M[j][i] = 1.

这道题让我们求朋友圈的个数,题目中对于朋友圈的定义是可以传递的,比如A和B是好友,B和C是好友,那么即使A和C不是好友,那么他们三人也属于一个朋友圈。那么比较直接的解法就是 DFS 搜索,对于某个人,遍历其好友,然后再遍历其好友的好友,那么就能把属于同一个朋友圈的人都遍历一遍,同时标记出已经遍历过的人,然后累积朋友圈的个数,再去对于没有遍历到的人在找其朋友圈的人,这样就能求出个数。其实这道题的本质是之前那道题 Number of Connected Components in an Undirected Graph,其实许多题目的本质都是一样的,就是看我们有没有一双慧眼能把它们识别出来:

解法一:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = ;
vector<bool> visited(n, false);
for (int i = ; i < n; ++i) {
if (visited[i]) continue;
helper(M, i, visited);
++res;
}
return res;
}
void helper(vector<vector<int>>& M, int k, vector<bool>& visited) {
visited[k] = true;
for (int i = ; i < M.size(); ++i) {
if (!M[k][i] || visited[i]) continue;
helper(M, i, visited);
}
}
};

我们也可以用 BFS 来遍历朋友圈中的所有人,解题思路和上面大同小异,参见代码如下:

解法二:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = ;
vector<bool> visited(n, false);
queue<int> q;
for (int i = ; i < n; ++i) {
if (visited[i]) continue;
q.push(i);
while (!q.empty()) {
int t = q.front(); q.pop();
visited[t] = true;
for (int j = ; j < n; ++j) {
if (!M[t][j] || visited[j]) continue;
q.push(j);
}
}
++res;
}
return res;
}
};

下面这种解法叫联合查找 Union Find,也是一种很经典的解题思路,在之前的两道道题 Graph Valid Tree 和 Number of Connected Components in an Undirected Graph 中也有过应用,核心思想是初始时给每一个对象都赋上不同的标签,然后对于属于同一类的对象,在 root 中查找其标签,如果不同,那么将其中一个对象的标签赋值给另一个对象,注意 root 数组中的数字跟数字的坐标是有很大关系的,root 存的是属于同一组的另一个对象的坐标,这样通过 getRoot 函数可以使同一个组的对象返回相同的值,参见代码如下:

解法三:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = n;
vector<int> root(n);
for (int i = ; i < n; ++i) root[i] = i;
for (int i = ; i < n; ++i) {
for (int j = i + ; j < n; ++j) {
if (M[i][j] == ) {
int p1 = getRoot(root, i);
int p2 = getRoot(root, j);
if (p1 != p2) {
--res;
root[p2] = p1;
}
}
}
}
return res;
}
int getRoot(vector<int>& root, int i) {
while (i != root[i]) {
root[i] = root[root[i]];
i = root[i];
}
return i;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/547

类似题目:

Accounts Merge

Redundant Connection II

Redundant Connection

Number of Islands II

Graph Valid Tree

Number of Connected Components in an Undirected Graph

Similar String Groups

参考资料:

https://leetcode.com/problems/friend-circles/

https://leetcode.com/problems/friend-circles/discuss/101440/c-bfs

https://leetcode.com/problems/friend-circles/discuss/101338/Neat-DFS-java-solution

https://leetcode.com/problems/friend-circles/discuss/101387/Easy-Java-Union-Find-Solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Friend Circles 朋友圈的更多相关文章

  1. [LeetCode] 547. Friend Circles 朋友圈

    There are N students in a class. Some of them are friends, while some are not. Their friendship is t ...

  2. LeetCode 547. Friend Circles 朋友圈(C++/Java)

    题目: https://leetcode.com/problems/friend-circles/ There are N students in a class. Some of them are ...

  3. [LeetCode]547. Friend Circles朋友圈数量--不相邻子图问题

    /* 思路就是遍历所有人,对于每一个人,寻找他的好友,找到好友后再找这个好友的好友 ,这样深度优先遍历下去,设置一个flag记录是否已经遍历了这个人. 其实dfs真正有用的是flag这个变量,因为如果 ...

  4. 547 Friend Circles 朋友圈

    班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集合.给 ...

  5. 【LeetCode】547. 朋友圈

    题目 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集 ...

  6. Leetcode547: Friend Circles 朋友圈问题

    问题描述 在一个班级里有N个同学, 有些同学是朋友,有些不是.他们之间的友谊是可以传递的比如A和B是朋友,B和C是朋友,那么A和C也是朋友.我们定义 friend circle为由直接或者间接都是朋友 ...

  7. Leetcode之深度优先搜索(DFS)专题-547. 朋友圈(Friend Circles)

    Leetcode之深度优先搜索(DFS)专题-547. 朋友圈(Friend Circles) 深度优先搜索的解题详细介绍,点击 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递 ...

  8. [Swift]LeetCode547. 朋友圈 | Friend Circles

    There are N students in a class. Some of them are friends, while some are not. Their friendship is t ...

  9. [LeetCode]547. 朋友圈(DFS)

    题目 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集 ...

随机推荐

  1. C/s从文件(TXT)中读取数据插入数据库

    流程: 1.当按钮单击时,弹出OpenFileDialog 2.判断后缀名是否合法 3.导入数据库 按钮事件中的代码: 1.判断用户是否选中文件. 2.判断用户选择的文件是否为txt //第一步,当按 ...

  2. mysql一库多表查询主键

    mysql> show databases; mysql> use information_schema; mysql> show tables; mysql> select ...

  3. 【踩坑】360安全浏览器“极速模式”和“兼容模式”,套路还是bug?

    分享踩坑点: 项目中需要兼容360安全浏览器,大家当然都希望用极速模式打开网站,但是发现总是被兼容模式打开 网址类似 aa.xx.dd.com 网上找了很多地方,有以下两种方法 1.<meta ...

  4. aws 装机软件

  5. MySQL数据库使用mysqldump导出数据详解

    mysqldump是mysql用于转存储数据库的实用程序.它主要产生一个SQL脚本,其中包含从头重新创建数据库所必需的命令CREATE TABLE INSERT等.接下来通过本文给大家介绍MySQL数 ...

  6. Js判断是否是直接进入本页面的

    今天带来一个Js的小示例,用来判断当前页面的链接来路.很多人应该可以用到,这个虽然非常简单,但是用到的地方却还是挺多的 首先新建一个index.html,代码如下 <!DOCTYPE html& ...

  7. Graphical Analysis of German Parliament Voting Pattern

    We use network visualizations to look into the voting patterns in the current German parliament. I d ...

  8. Identity Service - 解析微软微服务架构eShopOnContainers(二)

    接上一篇,众所周知一个网站的用户登录是非常重要,一站式的登录(SSO)也成了大家讨论的热点.微软在这个Demo中,把登录单独拉了出来,形成了一个Service,用户的注册.登录.找回密码等都在其中进行 ...

  9. [深圳/广州]微软SQL技术沙龙分享会(MVP)

    [深圳/广州] 新一期俱乐部活动报名开始,这次是广深地区SQL Server 技术沙龙分享会(MVP),SQL Server作为一个数据平台,不管是SQL Server 2017 on Linux 还 ...

  10. 每天一个Linux命令—— crontab

    一.简介 1. Linux中有许多周期性执行的任务,这些任务由cron守护进程完成,因此cron这个系统服务是默认启动的. 2.Linux中调度任务分为两类:系统任务调度和用户任务调度,系统任务调度即 ...