如何读取WKT格式文件

我们找到了这些有用的包:

Python - shapely.loads()

R - rgeos

如何读取geojson格式文件

我们找到了这些有用的包:

Python -  jsongeojsonshapely (使用json,然后将其转换成shapely的复杂多边形)

R - geojsonio

如何将几何投影到像素坐标

在我们提供的数据集中,我们创建了一组地理坐标,它们在x = [0,1]和y = [-1.0]的范围内。 这些坐标被变换,使得我们模糊卫星图像被拍摄的位置。 图像来自地球上相同的区域。

为了利用这些图像,我们提供每个图像的网格坐标,以便您知道如何缩放它们并将它们与像素的图像对齐。 在grid_sizes.csv中,给出每个imageId的Xmax和Ymin值。

对于每个图像,您应该能够从图像栅格获取宽度(W)和高度(H)。 对于3391 x 3349 x 3的3波段图像,W为3349,H为3391.然后可以按如下方式缩放数据:

如何将的你结果转为多边形

最好使用cascaded_union()将多边形列表展开为不重叠的多边形。

缩放结果回到原来的坐标:

然后就很容易使用shapely来输出多边形到wtk格式文件:mulitpoly.wkt

如何在Python中打开GeoTiff文件

GDAL功能强大但有点难安装。如果你想去用它读取栅格文件,tifffile是一个轻量的打开GeoTiff文件的包。

例如,下面的代码你能读取16波段的图像:

 import gdal
from gdalconst import * img_filename_16bandA = 'data/16band/6100_1_3_A.tif'
img_filename_16bandM = 'data/16band/6100_1_3_M.tif'
img_filename_16bandP = 'data/16band/6100_1_3_P.tif' datasetA = gdal.Open(img_filename_16bandA, GA_ReadOnly )
datasetM = gdal.Open(img_filename_16bandM, GA_ReadOnly )
datasetP = gdal.Open(img_filename_16bandP, GA_ReadOnly ) print 'Size is ',datasetA.RasterXSize,'x',datasetA.RasterYSize, \
'x',datasetA.RasterCount
print 'Size is ',datasetM.RasterXSize,'x',datasetM.RasterYSize, \
'x',datasetM.RasterCount
print 'Size is ',datasetP.RasterXSize,'x',datasetP.RasterYSize, \
'x',datasetP.RasterCount

输出:

Size is 136 x 134 x 8
Size is 848 x 837 x 8
Size is 3391 x 3348 x 1

 或者你能属于tiffffile:

 import tifffile as tiff
P = tiff.imread(img_filename_16bandP)
tiff.imshow(P)

打如何在R中打开Geo Tiff文件

感谢社区成员smota的提出:

 library(raster)
raster_6044_4_4 <- raster("./data/three_band/6040_4_4.tif")
plot(raster_6044_4_4)
library(rgdal)
gdal_6044_4_4 <- readGDAL(paste0("./data/three_band/", '6040_4_4', ".tif"))
plot(gdal_6044_4_4)

处理图像:

 devtools::install_github("ropensci/geojsonio")
library("geojsonio")
install.packages("rgdal", type = "source")
install.packages("rgeos", type = "source")
library("rgdal")
library("rgeos")
library(ggplot2)
grid_6010_4_4 <-geojson_read("./data/train_geojson/train_geojson/6010_4_4/Grid_6010.geojson", method = local, what= 'sp')
plot(grid_6010_4_4)
ggplot(grid_6010_4_4, aes(long, lat, group = group)) + geom_polygon()

获得Docker?

这个dockerfile应该能对Python使用者有帮助。

                                                                                   ---本文译自:https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/details/data-processing-tutorial

Dstl Satellite Imagery Feature Detection-Data Processing Tutorial的更多相关文章

  1. pytorch例子学习-DATA LOADING AND PROCESSING TUTORIAL

    参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUT ...

  2. Image Processing and Analysis_8_Edge Detection:Design of steerable filters for feature detection using canny-like criteria ——2004

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  3. Image Processing and Analysis_21_Scale Space:Feature Detection with Automatic Scale Selection——1998

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  4. Image Processing and Computer Vision_Review:A survey of recent advances in visual feature detection(Author's Accepted Manuscript)——2014.08

    翻译 一项关于视觉特征检测的最新进展概述(作者已被接受的手稿) 和A survey of recent advances in visual feature detection——2014.08内容相 ...

  5. Linux command line exercises for NGS data processing

    by Umer Zeeshan Ijaz The purpose of this tutorial is to introduce students to the frequently used to ...

  6. Chrysler -- CCD (Chrysler Collision Detection) Data Bus

    http://articles.mopar1973man.com/general-cummins/34-engine-system/81-ccd-data-bus CCD (Chrysler Coll ...

  7. [翻译]MapReduce: Simplified Data Processing on Large Clusters

    MapReduce: Simplified Data Processing on Large Clusters MapReduce:面向大型集群的简化数据处理 摘要 MapReduce既是一种编程模型 ...

  8. Spring Data JPA Tutorial Part Nine: Conclusions(未翻译)

    This is the ninth and the last part of my Spring Data JPA tutorial. Now it is time to take a look of ...

  9. SQL Server Reporting Services 自定义数据处理扩展DPE(Data Processing Extension)

    最近在做SSRS项目时,遇到这么一个情形:该项目有多个数据库,每个数据库都在不同的服务器,但每个数据库所拥有的数据库对象(table/view/SPs/functions)都是一模一样的,后来结合网络 ...

随机推荐

  1. 《NoSQL精粹》读书笔记

    NoSQL数据库数据模型的一般分类: 1. 键值数据模型 2. 文档数据模型 3. 列族数据模型 4. 图数据模型 常见NoSQL数据库: Redis, Cassandra, MongoDB, Neo ...

  2. 通过maven test 报org.apache.ibatis.binding.BindingException: Invalid bound statement

    背景 直接使用eclipse工具去执行,没有问题,通过testng.xml去执行,没有问题,但通过mvn clean test执行,就报错,提示org.apache.ibatis.binding.Bi ...

  3. javaScript系列:JSON详解

    JSON详解   JSON的全称是”JavaScript Object Notation”,意思是JavaScript对象表示法,它是一种基于文本,独立于语言的轻量级数据交换格式.XML也是一种数据交 ...

  4. Python之测试webservice接口

    前段时间学习了Python操作http接口,觉得挺容易的.最近项目组也有接触webservice接口,心里想想是否Python也可以操作这类接口.于是利用伟大的度娘,花了6个小时研究出来了,所以迫不及 ...

  5. try...catch...finally语句块

    try-catch-finally语句主要是用来处理检查异常,捕获并处理,以及最后必须要执行的finally块. try-catch-finally语句入门: 1.try-catch-finally语 ...

  6. Java-break,continue,return用法

    当年的我也算是基础小王子,但是长时间的不用导致我与他们越来越陌生了,所以我要把他们记在我的本本上. 首先我们要明白,java中到底有多少个循环关键字? 答:没错,就是3个,他们分别是:for(初始值: ...

  7. JDK+Tomcat搭建JSP运行环境--JSP基础

    一.搭建JSP运行环境之前需要了解的基本知识 配置JSP运行环境之前,我们需要了解JSP的运行机制.只有了解JSP运行机制后,我们才能知道为什么要搭建JSP运行环境?如何去搭建JSP运行环境?为什么要 ...

  8. 深入浅出数据结构C语言版(17)——有关排序算法的分析

    这一篇博文我们将讨论一些与排序算法有关的定理,这些定理将解释插入排序博文中提出的疑问(为什么冒泡排序与插入排序总是执行同样数量的交换操作,而选择排序不一定),同时为讲述高级排序算法做铺垫(高级排序为什 ...

  9. Phpstorm中使用SFTP

    Phpstorm中经常会出现FTP连接失败的问题,这个时候我们可以使用SFTP来连接服务器. 1.添加服务器.tools--deployment--configuration/browse Remot ...

  10. jQuery控制a标签不可点击 不跳转

    jquery禁用a标签方法1 01 02 03 04 05 06 07 08 09 10 11 12 $(document).ready(function () {         $("a ...