题意:给定一个如上的长方形箱子,中间有n条线段,将其分为n+1个区域,给定m个玩具的坐标,统计每个区域中的玩具个数。

题解:通过斜率判断一个点是否在两条线段之间。

/**
通过斜率比较点是否在两线段之间
*/ #include"iostream"
#include"cstdio"
#include"algorithm"
#include"cstring"
using namespace std;
const int N=1005; struct edgeP //边上的一个点
{
int x1,x2;
}e[N]; struct point
{
int x,y;
}p[N]; int cmp(edgeP a,edgeP b)
{
return a.x1<=b.x1;
} int x1,y1,x2,y2; bool is_z(point e1,point e2) // /型斜线
{
if((e1.y-e2.y)*(e1.x-e2.x)>=0)
return true;
else
return false;
} bool is_f(point e1,point e2) // \型斜线
{
if((e1.y-e2.y)*(e1.x-e2.x)<=0)
return true;
else
return false;
} bool is_inzr(point e1,point e2,point p) // 在/型斜线的右边
{
if((e1.y-e2.y)*(e1.x-e2.x)>=0)
{
if((p.x-e2.x>0)&&(e1.y-e2.y)*(p.x-e2.x)>(p.y-e2.y)*(e1.x-e2.x))
return true;
}
return false;
} bool is_infl(point e1,point e2,point p) // 在\型斜线的左边
{
if((e1.y-e2.y)*(e1.x-e2.x)<=0)
{
if((p.x-e2.x<0)&&(e1.y-e2.y)*(p.x-e2.x)<(p.y-e2.y)*(e1.x-e2.x))
return true;
}
return false;
} bool is_in(point e1,point e2,point e3,point e4,point p) // 点是否在两线内
{
if((is_z(e1,e2)&&is_inzr(e1,e2,p))&&(is_f(e3,e4)&&is_infl(e3,e4,p))) // 点在/.\型两线间
return true;
if((is_z(e1,e2)&&is_inzr(e1,e2,p))&&(is_z(e3,e4)&&!is_inzr(e3,e4,p))) // 点在/./型两线间
return true;
if((is_f(e1,e2)&&!is_infl(e1,e2,p))&&(is_f(e3,e4)&&is_infl(e3,e4,p))) //点在\.\型两线间
return true;
if((is_f(e1,e2)&&!is_infl(e1,e2,p))&&(is_z(e3,e4)&&!is_inzr(e3,e4,p))) //点在\./型两线间
return true;
return false;
} int main()
{
int n,m;
while(cin>>n)
{
if(n==0)
return 0;
e[0].x1=0,e[0].x2=0;
cin>>m>>x1>>y1>>x2>>y2;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&e[i].x1,&e[i].x2);
}
for(int i=0;i<m;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
}
e[n+1].x1=x2,e[n+1].x2=x2;
sort(e,e+n+2,cmp);
int cnt[N];
memset(cnt,0,sizeof(cnt));
for(int i=0;i<=n;i++)
{
for(int j=0;j<m;j++)
{ point e1,e2;
e1.x=e[i].x1,e1.y=y1;
e2.x=e[i].x2,e2.y=y2;
point e3,e4;
e3.x=e[i+1].x1,e3.y=y1;
e4.x=e[i+1].x2,e4.y=y2;
/*{
cout<<'('<<e1.x<<','<<e1.y<<')'<<" "<<'('<<e2.x<<','<<e2.y<<')'<<endl;
cout<<'('<<e3.x<<','<<e3.y<<')'<<" "<<'('<<e4.x<<','<<e4.y<<')'<<endl;
cout<<'('<<p[j].x<<','<<p[j].y<<')'<<endl;
}*/
if(is_in(e1,e2,e3,e4,p[j]))
{
cnt[i]++;
//cout<<"cnt"<<i<<"++++++++++++++++++++++"<<endl;
}
}
//cout<<"-------------------------------------------"<<endl;
}
/*for(int i=0;i<=n;i++)
{
cout<<cnt[i]<<' ';
}*/
sort(cnt,cnt+n+1);
puts("Box");
int j=cnt[0],count=1;
cnt[n+1]=-10;
for(int i=1;i<=n+1;i++)
{
if(cnt[i]==j)
{
count++;
}
else
{
if(j!=0)
printf("%d: %d\n",j,count);
j=cnt[i];
count=1;
}
}
}
}

 

 

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

POJ 2398 Toy Storage(计算几何)的更多相关文章

  1. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  2. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  3. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  4. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  5. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  6. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  7. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. POJ 2398 Toy Storage (叉积判断点和线段的关系)

    题目链接 Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4104   Accepted: 2433 ...

随机推荐

  1. .NET Core 使用Dapper 操作MySQL

    MySQL官方驱动:http://www.cnblogs.com/linezero/p/5806814.html .NET Core 使用Dapper 操作MySQL 数据库, .NET Core 使 ...

  2. 多线程条件通行工具——CyclicBarrier

    CyclicBarrier的作用是,线程进入等待后,需要达到一定数量的等待线程后,再一次性开放通行. CyclicBarrier(int, Runnable)构造方法,参数1为通行所需的线程数量,参数 ...

  3. 门面模式的典型应用 Socket 和 Http(post,get)、TCP/IP 协议的关系总结

    门面模式的一个典型应用:Socket 套接字(Socket)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元.它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息: 连接使用的 ...

  4. Linux平台 Oracle 11gR2 RAC安装Part1:准备工作

    一.实施前期准备工作 1.1 服务器安装操作系统 1.2 Oracle安装介质 1.3 共享存储规划 1.4 网络规范分配 二.安装前期准备工作 2.1 各节点系统时间校对 2.2 各节点关闭防火墙和 ...

  5. iOS 调试工具

    仪表  xcode5 引入了调试仪表,通过仪表可以直观的看出应用的CPU和内存占用量.运行一个程序,点击仪表栏.可以发现当程序处于运行状态时,调试导航面板会以柱状图显示CPU和内存占用量,并随着应用实 ...

  6. 『.NET Core CLI工具文档』(十二)dotnet-pack

    说明:本文是个人翻译文章,由于个人水平有限,有不对的地方请大家帮忙更正. 原文:dotnet-pack 翻译:dotnet-pack 名称 dotnet-pack - 将代码打包成 NuGet 包 概 ...

  7. C# WinForm使用乐器数字接口

    继续,前面已经实现了C#调用Windows API实现了弹出对话框功能.使用了User32.dll文件,主要代码如下: [DllImport("User32.dll")]publi ...

  8. /etc/sysconfig/下找不到iptables文件解决方法

    时间:2014-12-19 01:17来源:csdn 作者:大智 举报 点击:5639次 本想做些防火墙策略.防火墙策略都是写在/etc/sysconfig/iptables文件里面的.可我发现我也没 ...

  9. java多线程同步,等待,唤醒

    notify().notifyAll().wait()属于java.lang.Object,java.lang.Thread也是Object,自然也有上述方法: sleep().interrupt() ...

  10. Mybatis配置一对多的关联关系(五)

    问题:是查询一个部门中的员工? 一.web项目构架 二.lib文件的jar 三.配置大小配置和该工具类 1大配置mybatis-config.xml <?xml version="1. ...