《算法导论》习题解答 Chapter 22.1-6(求universal sink 通用汇点)
思路:设置两个游标i指向行,j指向列,如果arr[i][j]==1,则i=max{i+1,j},j++;如果arr[i][j]==0,则j=max{i+1,j+1}。
伪代码:
has_universal_sink()
for i=1 to N //对角线检查是否全是0
if A[i][i]==1 return false;
i=1,j=2
while(i<=N && j<=N)
if(A[i][j]==1)
i=max{i+1,j}
j++
else
j=max{i+1,j+1}
if i<=N
if check arr[i][*]=0,arr[*(except i)][i]=1 return true;
else return false;
else
return false;
命题:如果A[i][j]=0,则j不是通用汇点。
因为A[i][j]=0,说明i到j没有边,而通用汇点的定义是一定要每个点都要有一条指向他的边,因此j不是通用汇点。
命题:如果A[i][j]=1,则i不是通用汇点。
因为A[i][j]=1,所以i到j有一条边,所以i不是通用汇点。
循环不变式:每次迭代前,i之前和j之前但不包括i的点都不是通用汇点。
初始:i=1,j=2,i之前为空,j之前但不包括i的点也为空,因此成立。
保持:在迭代开始时,已知i之前和j之前但不包括i的点都不是通用汇点,当进入循环体后,如果A[i][j]==1,则说明i肯定不是通用汇点,并且已知j之前不包括i的点不是通用汇点,因此i=max{i+1,j},j++后仍然保持不变式;如果A[i][j]==0,则j不是通用汇点,如果j原本小于i,则j要到i+1,因为已知i之前的点肯定不是通用汇点,所以现在仍然保持不变式成立。
终止:如果i<=N,j=N+1,j之前除了i其他点都不是通用汇点,因此需要去全面检查i是不是通用汇点。如果i=N+1,则不需要检查了,没有通用汇点。
命题:如果A[i][j]=1,则j之前的点都不是通用汇点。
命题:如果A[i][j]=0,则i之前的点都不是通用汇点。
输入:
4 3
a c
b c
d c
源代码:
package C22; import java.io.ObjectInputStream.GetField; /**
* 此处提供两种方法,一种是网上的方法,一种是自己想的方法,
* 经过测试,如果同时执行100000000次,则网上的方法速度是3.6秒,我的方法速度是3秒
* @author xiazdong
*
*/
public class C1_6 {
private static int sink_index = -1;
public static void main(String[] args) throws Exception {
Adjacent_Matrix adj_matrix = GraphFactory.getAdjacentMatrixInstance("input\\22.1-6.txt");
boolean flag = has_universal_sink(adj_matrix);
if(flag)System.out.println(adj_matrix.getVertexValue(sink_index));
}
/**
* 自己的方法
* @return
*/
public static boolean has_universal_sink(Adjacent_Matrix g){
int i=0,j=0;
boolean flag = true;
while(j<=g.getSize()-1){
if(g.getElement(i, j)==1){
i = j;
}
j++;
}
//检查arr[i][*]==0 arr[*(except i)][i]==1
for(int a=0;a<g.getSize();a++){
if(g.getElement(i, a)==1&&i!=a){
flag = false;
}
if(g.getElement(a, i)==0&&i!=a){
flag = false;
}
}
if(flag) sink_index = i;
return flag;
}
/**
* 网上的方法
* @return
*/
public static boolean has_universal_sink2(Adjacent_Matrix g){
int i=0,j=0;
boolean flag = true;
while(j<=g.getSize()-1){
if(g.getElement(i, j)==1){
i++;
}
else
j++;
}
//检查arr[i][*]==0 arr[*(except i)][i]==1
for(int a=0;a<g.getSize();a++){
if(g.getElement(i, a)==1&&i!=a){
flag = false;
}
if(g.getElement(a, i)==0&&i!=a){
flag = false;
}
}
if(flag) sink_index = i;
return flag;
}
}
这边还有一篇跟通用汇点有关的博文,说实话,通用汇点的o(v)的求法我还不是搞的很懂,有空值得研究一下。
(原文点此,索引目录。感谢xiazdong君
&& Google酱。这里是偶尔做做搬运工的水果君(^_^)
)
《算法导论》习题解答 Chapter 22.1-6(求universal sink 通用汇点)的更多相关文章
- 《算法导论》习题解答 Chapter 22.1-5(求平方图)
一.邻接矩阵实现 思路:如果是邻接矩阵存储,设邻接矩阵为A,则A*A即为平方图,只需要矩阵相乘即可: 伪代码: for i=1 to n for j=1 to n for k=1 to n resul ...
- (搬运)《算法导论》习题解答 Chapter 22.1-1(入度和出度)
(搬运)<算法导论>习题解答 Chapter 22.1-1(入度和出度) 思路:遍历邻接列表即可; 伪代码: for u 属于 Vertex for v属于 Adj[u] outdegre ...
- 《算法导论》习题解答 Chapter 22.1-4(去除重边)
思路:重开一个新图,按着邻接列表的顺序从上到下遍历,每遍历一行链表前,清空visited数组,如果没有访问过这个元素,则加入新图,如果已经访问过了(重边),则不动. 伪代码: 复杂度:O(V+E) f ...
- 《算法导论》习题解答 Chapter 22.1-8(变换邻接表的数据结构)
一般散列表都与B+树进行比较,包括在信息检索中也是. 确定某条边是否存在需要O(1). 不足: (1)散列冲突. (2)哈希函数需要不断变化以适应需求. 另外:B+树.(见第18章) 与散列表相比的不 ...
- 《算法导论》习题解答 Chapter 22.1-7(关联矩阵的性质)
主对角线:出度+入度 其他:arr[i][j]=-n,则i与j之间有n条边. 证明: (原文点此,索引目录.感谢xiazdong君 && Google酱.这里是偶尔做做搬运工的水果君( ...
- 《算法导论》习题解答 Chapter 22.1-3(转置图)
一.邻接表实现 思路:一边遍历,一边倒置边,并添加到新的图中 邻接表实现伪代码: for each u 属于 Vertex for v 属于 Adj[u] Adj1[v].insert(u); 复杂度 ...
- 《算法导论》习题解答 Chapter 22.1-2(邻接矩阵与链表)
链表如图: 矩阵: 1 2 3 4 5 6 7 1 0 1 1 0 0 0 0 2 1 0 0 1 1 0 0 3 1 0 0 0 0 1 1 4 0 1 0 0 0 0 0 5 0 1 0 0 0 ...
- C++ Primer(第五版)读书笔记 & 习题解答 --- Chapter 3
Chapter 3.1 1. using声明具有如下的形式: using namespace::name; Chapter 3.2 1. C++标准一方面对库类型所提供的操作做了规定,另一方面也对库的 ...
- C++ Primer(第五版)读书笔记 & 习题解答 --- Chapter 2
Chapter 2.1 1. 数据类型决定了程序中数据和操作的意义. 2. C++定义了一套基本数据类型,其中包括算术类型和一个名为void的特殊类型.算术类型包含了字符.整型.布尔值以及浮点数.vo ...
随机推荐
- 获取父进程ID
本程序主要功能是:获取某程序的ParentProcessID 直接上代码: // parent.cpp (Windows NT/2000) // // This example will show t ...
- (剑指Offer)面试题33:把数组排成最小的数
题目: 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组{3,32,321},则打印出这三个数字能排成的最小数字为321323. 思路: 1.全 ...
- springmvc中forward和redirect
一.跳转 import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; im ...
- USB DATA Toggle
For bulk and interrupt transfers, the data toggle resets <0> only on Set Configuration, Set In ...
- C++学习笔记之友元
一.引言 C++控制对类对象私有部分(private)的访问,通常只能通过公有的(public)类方法去访问.但是有时候这种限制太严格,不适合特定的问题,于是C++提供了另外一种形式的访问权限:友元. ...
- Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心
B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...
- .net+mssql制作抽奖程序思路及源码
近期一直在研究数据库,刚好有个项目要做抽奖程序,恩,拿来练练手吧. 抽奖程序: 思路整理,无非就是点一个按钮,然后一个图片旋转一会就出来个结果就行了,可这个程序的要求不是这样的,是需要从数据库中随机抽 ...
- Android Compatibility package 兼容性开发套件
我们认为Android 3.0平板电脑操作系统在美国时间2011年2月22日的正式推出,对于Android手机应用程序开发者所象征的意涵是: 之前大家所开发过的Android手机应用,除了可以在And ...
- [Angular2 Router] CanActivate Route Guard - An Example of An Asynchronous Route Guard
In this tutorial we are going to learn how we can to configure an can activate route guard in the An ...
- dwr2反推
package services; import org.directwebremoting.Browser; import org.directwebremoting.ScriptSessions; ...