思路:直接引用论文的话。

暂时先不考虑“使剩下的物品都放不下”的条件,那就是求 0-1 背包
的所有可行方案。
用 Fi[j]表示前 i 件物品中选若干件总体积为 j 的方案数,初始为 F0[0]=1,转移
方程是:
Fi[j] = Fi-1[j] (Vi>j)
Fi[j] = Fi-1[j] + Fi-1[j-Vi](j>=Vi)
 
显然这个算法的效率是 O(n*C)的,它计算了所有装放背包的方案数。
 
现在考虑“使剩下的物品都放不进去”的条件,如果剩下的物品中体
积最小为 v,那么方案数就是 sum{ Fn[j] }(C>=j>C-v)。前提是我们事先确定
了剩下中体积最小的是哪个。
对体积排序后,下一步就是枚举 i 作为剩余物品中体积最小的一件。对
于所有 s<i 的物品必须都要放入背包,对于 i 则不能放入背包,对于 s>i 的
物品做 0-1背包可行方案的统计,将sum{ Fn[j] }(C>=j>C-Vi)累加到 ans。
由于每次都需要对 n-i 件物品做统计,一共统计 n次,效率是 O(n2
*C)。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define Maxn 4000
using namespace std;
int v[Maxn],dp[],ans,Min,Sum;
int main()
{
int t,n,m,i,j,Case=;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
Sum=;
Min=0x7fffffff;
for(i=;i<=n;i++)
{
scanf("%d",v+i);
Min=min(Min,v[i]);
Sum+=v[i];
}
ans=;
int sum=,f=,k;
sort(v+,v++n);
for(i=;i<=n;i++)
{
memset(dp,,sizeof(dp));
dp[sum]=;
for(j=i+;j<=n;j++)
for(k=m;k>=sum+v[j];k--)
dp[k]=dp[k]+dp[k-v[j]];
for(j=m;j>=m-v[i]+;j--)
if(j>=sum) ans+=dp[j];
sum+=v[i];
}
if(Sum<=m)
printf("%d 1\n",++Case);
else
if(Min>m)
printf("%d 0\n",++Case);
else
printf("%d %d\n",++Case,ans);
}
return ;
}

hdu 3093 动态规划的更多相关文章

  1. hdu 1087 动态规划之最长上升子序列

    http://acm.hdu.edu.cn/showproblem.php?pid=1087 Online Judge Online Exercise Online Teaching Online C ...

  2. HDU 1003 动态规划

    http://acm.hdu.edu.cn/showproblem.php?pid=1003 这几天开始刷动归题目,先来一道签到题 然而做的并不轻松, 没有注意到边界问题, WA了几发才发现 #inc ...

  3. hdu 4055 && hdu 4489 动态规划

    hdu 4055: 一开始我想的递推方向想得很复杂,看了别人的博客后才醍醐灌顶: 参照他的思路和代码: #include<cstdio> #include<cstring> # ...

  4. hdu 4745 动态规划

    思路:特水的一个最长回文子序列动态规划.比赛时硬卡第一题,49WA后终于AC,可惜没时间做这题,结果成绩也就可想而知了.兔子跳一样权值的石头,并且一个正跳,一个反跳,这不就是个回文子序列吗?????! ...

  5. hdu 4711 动态规划

    思路:其实这题是个挺水的动态规划,一开始就能AC,可是不知道错哪了,瞎改瞎交,WA了数十次.AC之后怎么改都是AC,也不知道改了什么地方,郁闷死了~~~难道开始时的测试数据有问题??? dp[i][j ...

  6. HDU 6076 (动态规划)

    HDU 6076 Security Check Problem : 有两个长度为n的队列过安检,每个人有一个特征值.如果两个队列中的第一个人的特征值之差小于等于k,那么一次只能检查其中一个人,否则一次 ...

  7. HDU 1171 Big Event in HDU (动态规划、01背包)

    Big Event in HDU Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. hdu 4719 动态规划

    思路:dp[i]表示到第i个点为结尾能获得的最大值,那么dp[i]=h[i]*h[i]+dp[i-x]-h[i-x];(i-l<=x<=i);那么我们可以转换下,以dp[i]-h[i]为新 ...

  9. hdu 3280 动态规划

    思路:dp[i][j]表示区间i,j变为回文串最少的代价. #include<map> #include<set> #include<cmath> #include ...

随机推荐

  1. POJ 3922A Simple Stone Game

    题目链接 A Sample Stone Game 题目大意:给定n,k,表示最初时有n个石头,两个人玩取石子游戏,第一个人第一次可以取1~n-1个石头,后面每个人最多可以拿走前面一个人拿走的个数的K倍 ...

  2. CoreSeek有符号整型

    数据库status字段的值有:-1,0,1 设置过滤字段,发现sql_attr_uint不支持负数,后改用sql_attr_bigint sql_attr_bigint = status sql_at ...

  3. typdef struct 语法

    1:结构体 C语言中定义一个结构体的语法如下: struct tagMyStruct { int age; int sex; }; 其中,tagMyStruct是结构体名,在使用时,需要和struct ...

  4. 得到内网域管理员的5种常见方法<转>

    1.Netbios and LLMNR Name Poisoning 这个方法在WIN工作组下渗透很有用,WIN的请求查询顺序是下面三个步骤:本地hosts文件(%windir%\System32\d ...

  5. IIS功能查看、配置

    #获取所有IIS功能列表: get-webconfiguration -filter /system.webserver #查看目录浏览功能的配置信息:Get-WebConfiguration -fi ...

  6. 嗯,记录一些eclipse的快捷键

    alt+/:自动补全 ctrl+/:注释 // 再按一下取消注释 ctrl+shift+\:区块注释 /* */ ctrl+shift+\:取消区块注释 ctrl+shift+f:格式化代码 ctrl ...

  7. SOA面向服务化编程架构(dubbo)

      dubbo 是阿里系的技术.并非淘宝系的技术啦,淘宝系的分布式服务治理框架式HSF啦 ,只闻其声,不能见其物.而dubbo是阿里开源的一个SOA服务治理解决方案,dubbo本身 集成了监控中心,注 ...

  8. 用perl对字符串进行全角转半角操作

    #全角转半角 #ljl use Encode; sub CheckSBC { my ($name)=@_; my @character; my $tmpname=$name; my $headname ...

  9. iOS开发——网络Swift篇&JSON与XML数据解析

    JSON与XML数据解析 JSON数据解析(内置NSJSONSerialization与第三方JSONKit)   一,使用自带的NSJSONSerialization 苹果从IOS5.0后推出了SD ...

  10. 如何在Ubuntu 13.04中升级到 GNOME 3.8

    如何在Ubuntu 13.04中升级到 GNOME 3.8 添加 GNOME 3 PPA(Personal Package Archives) 在你进一步浏览之前,确认你正在运行的是Ubuntu 13 ...