Sheldon Numbers

题目链接:

http://acm.hust.edu.cn/vjudge/contest/127406#problem/H

Description


According to Sheldon Cooper, the best number is 73. In his own words,
“The best number is 73. 73 is the 21st prime number. Its mirror, 37,
is the 12th, and its mirror, 21, is the product of multiplying 7 and 3. In
binary, 73 is a palindrome: 1001001, which backwards is 1001001. Exactly
the same.”
Prime numbers are boring stuff, and so are palindromes. On the other
hand, the binary representation of 73 is rather remarkable: it’s 1 one followed
by 2 zeroes, followed by 1 one, followed by 2 zeros, followed by 1 one.
This is an interesting pattern that we can generalize: N ones, followed by
M zeros, followed by N ones, followed by M zeros, etc, ending in either N ones or M zeroes. For 73,
N is 1, M is 2, and there are 5 runs of equal symbols. With N = 2, M = 1 and 4 runs, we would have
the string 110110, which is the binary representation of 54.
Acknowledging Sheldon’s powerful insight, let us introduce the concept of a Sheldon number: a
positive integer whose binary representation matches the pattern ABABAB . . . ABA or the pattern
ABABAB . . . AB, where all the occurrences of A represent a string with N occurrences of the bit 1
and where all the occurrences of B represent a string with M occurrences of the bit 0, with N > 0 and
M > 0. Furthermore, in the representation, there must be at least one occurrence of the string A (but
the number of occurrences of the string B may be zero).
Many important numbers are Sheldon numbers: 1755, the year of the great Lisbon earthquake,
1984, of Orwellian fame, and 2015, the current year! Also, 21, which Sheldon mentions, is a Sheldon
number, and so is 42, the answer given by the Deep Thought computer to the Great Question of Life,
the Universe and Everything.
Clearly, there is an infinite number of Sheldon numbers, but are they more dense or less dense than
prime numbers?
Your task is to write a program that, given two positive integers, computes the number of Sheldon
numbers that exist in the range defined by the given numbers.

Input


The input file contains several test cases, each of them as described below.
The input contains one line, with two space separated integer numbers, X and Y .
Constraints:
0 ≤ X ≤ Y ≤ 2^63

Output


For each test case, the output contains one line, with one number, representing the number of Sheldon
numbers that are greater or equal to X and less or equal to Y .
Notes:
Explanation of output 1. All numbers between 1 and 10 are Sheldon Numbers.
Explanation of output 2. 73 is the only Sheldon number in this range.

Sample Input


1 10
70 75

Sample Output


10
1


##题意:

求区间[X,Y]之间有多少个Sheldon Number:
其二进制表示满足 ABAB...AB 或 ABAB...ABA 的格式.
其中A为连续n(n>0)个1,B为连续m(n>0)个1.


##题解:

一开始尝试打表,并在oeis上找到了序列(不过没公式).
后来换个方向从N和M的角度考虑:
对于一个满足条件的二进制串:如果N和M、长度这三个因素都固定了,那么这个串也就固定了.
所以符合条件的串的个数少于 64^3 个.
依次枚举N、M、长度这三个因素并构造符合条件的数,加入set判重.
实际上符合条件的数只有4810个.
注意:题目的右区间2^63超出了longlong范围,这里要用unsigned longlong. (%llu)
UVA上的题不要再用I64d了,已经被坑好几回了,老是忘.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL unsigned long long
#define eps 1e-8
#define maxn 101000
#define mod 100000007
#define inf 0x3f3f3f3f
#define mid(a,b) ((a+b)>>1)
#define IN freopen("in.txt","r",stdin);
using namespace std;

set ans;

void init() {

for(int n=1; n<64; n++) {

for(int m=0; m<64; m++) {

for(int len=1; len<=64; len++) {

if(!((len%(m+n)0) || (len%(m+n)n))) continue;

LL cur = 0;

bool flag = 1;

int i = 0;

while(1) {

if(i >= len) break;

                if(flag) {
flag = 0;
cur <<= n;
i += n;
cur += (1LL<<n)-1;
} else {
cur <<= m;
flag = 1;
i += m;
}
}
ans.insert(cur);
}
}
}

}

int main(int argc, char const *argv[])

{

//IN;

init();
int sz = ans.size();
LL l,r;
while(scanf("%llu %llu", &l,&r) != EOF)
{
int Ans = 0; set<LL>::iterator it;
for(it=ans.begin(); it!=ans.end(); it++) {
if((*it)>=l && (*it)<=r) {
Ans++;
//printf("%d\n", *it);
}
}
printf("%d\n", Ans);
} return 0;

}

UVALive 7279 Sheldon Numbers (暴力打表)的更多相关文章

  1. codeforces 9 div2 C.Hexadecimal's Numbers 暴力打表

    C. Hexadecimal's Numbers time limit per test 1 second memory limit per test 64 megabytes input stand ...

  2. HNUSTOJ-1565 Vampire Numbers(暴力打表)

    1565: Vampire Numbers 时间限制: 3 Sec  内存限制: 128 MB提交: 20  解决: 9[提交][状态][讨论版] 题目描述 The number 1827 is an ...

  3. XTU OJ 1210 Happy Number (暴力+打表)

    Problem Description Recently, Mr. Xie learn the concept of happy number. A happy number is a number ...

  4. HDU 1216 Assistance Required(暴力打表)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1216 Assistance Required Time Limit: 2000/1000 MS (Ja ...

  5. UVA - 13022 Sheldon Numbers(位运算)

    UVA - 13022 Sheldon Numbers 二进制形式满足ABA,ABAB数的个数(A为一定长度的1,B为一定长度的0). 其实就是寻找在二进制中满足所有的1串具有相同的长度,所有的0串也 ...

  6. ACM/ICPC 之 暴力打表(求解欧拉回路)-编码(POJ1780)

    ///找到一个数字序列包含所有n位数(连续)一次且仅一次 ///暴力打表 ///Time:141Ms Memory:2260K #include<iostream> #include< ...

  7. 【ZOJ】3785 What day is that day? ——浅谈KMP在ACM竞赛中的暴力打表找规律中的应用

    转载请声明出处:http://www.cnblogs.com/kevince/p/3887827.html    ——By Kevince 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这 ...

  8. HDU 1012 u Calculate e【暴力打表,水】

    u Calculate e Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. Codeforces 914 C 数位DP+暴力打表+思维

    题意 给出一个二进制数\(n\),每次操作可以将一个整数\(x\)简化为\(x\)的二进制表示中\(1\)的个数,如果一个数简化为\(1\)所需的最小次数为\(k\),将这个数叫做特殊的数, 问从\( ...

随机推荐

  1. 自定义View(3)关于canas.drawText

    本文以Canvas类的下面这个函数为基础,它用来在画布上绘制文本. public void drawText(String text, float x, float y, Paint paint) 效 ...

  2. Python转义字符

    在需要在字符中使用特殊字符时,python用反斜杠(\)转义字符.有时我们并不想让转义字符生效,我们只想显示字符串原来的意思,这就要用r和R来定义原始字符串.如:print r'\t\r'实际输出为“ ...

  3. tranform-scale 缩小元素,移上去文字抖动

    元素缩小后,鼠标移上去之后文字会出现抖动, -webkit-transform:scale(0.5); 修复代码如下: *{ -webkit-backface-visibility: hidden; ...

  4. 8天学通MongoDB——第四天 索引操作

    这些天项目改版,时间比较紧,博客也就没跟得上,还望大家见谅. 好,今天分享下mongodb中关于索引的基本操作,我们日常做开发都避免不了要对程序进行性能优化,而程序的操作无非就是CURD,通常我们 又 ...

  5. UVA 11478 Halum(用bellman-ford解差分约束)

    对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...

  6. AngularJS promise()

    实例说明一 <!DOCTYPE html> <html ng-app="my-app"> <head> <meta charset=&qu ...

  7. js spin 加载动画(loading)

    js spin 加载动画 最近做页面ajax加载是又用到loading动画,还好有一个spin.js 具体的包大家可以去http://fgnass.github.com/spin.js/下载, 如果想 ...

  8. PHP经验集锦

    最近刚刚完成手中的项目,比较闲.来这儿转转,把积累的一些技巧分享给大家!1.关于PHP重定向 方法一:header("Location: index.php"); 方法二:echo ...

  9. HDU 5430 Reflect

    题意:问在一个圆形的镜面里,从任意一点发出一个光源,经n次反射回到起点的情况数是多少. 解法:直接贴题解吧…… 求1至N+1中与N+1互质的个数,即欧拉函数. 代码: #include<stdi ...

  10. C#中的值类型(value type)与引用类型(reference type)的区别

    ylbtech- .NET-Basic:C#中的值类型与引用类型的区别 C#中的值类型(value type)与引用类型(reference type)的区别 1.A,相关概念返回顶部     C#中 ...