HDU 5726 GCD (RMQ + 二分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726
给你n个数,q个询问,每个询问问你有多少对l r的gcd(a[l] , ... , a[r]) 等于的gcd(a[l'] ,..., a[r'])。
先用RMQ预处理gcd,dp[i][j] 表示从i开始2^j个数的gcd。
然后用map存取某个gcd所对应的l r的数量。
我们可以在询问前进行预处理,先枚举i,以i为左端点的gcd(a[i],..., a[r])的种类数不会超过log2(n),gcd呈单调不增性。(因为gcd值每次变化,至少除以2)
所以所有的gcd的种类个数最多就nlog2(n)。
明白之后,我们可以枚举i为左端点固定,然后二分一下右端点,计算每种gcd的数量。
大概理解之后就可以敲了,然后就是细节问题。
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <ctime>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define Fill(x, y) memset((x), (y), sizeof(x))
#define Rep(i, x, y) for(int i = x; i <= y; ++i)
#define Dow(i, x, y) for(int i = x; i >= y; --i)
typedef long long LL;
typedef pair <int, int> P;
typedef pair <LL, LL> PLL;
const LL mod = 1e9 + ;
const LL inf = 1e18;
const int N = 1e5 + ;
int GCD(int a, int b) {
return b ? GCD(b, a % b) : a;
} int dp[N][];
map <int , LL> mp; void ST(int n) {
for(int k = ; k < ; ++k) {
for(int i = ; i + ( << k) - <= n ; ++i) {
dp[i][k] = GCD(dp[i][k - ] , dp[i + ( << (k - ))][k - ]);
}
}
} int rmq(int l , int r) {
int k = log2(r - l + );
return GCD(dp[l][k] , dp[r - ( << k) + ][k]);
} int main()
{
int t , n , q , u , v;
scanf("%d" , &t);
for(int ca = ; ca <= t ; ++ca) {
scanf("%d" , &n);
for(int i = ; i <= n ; ++i)
scanf("%d" , &dp[i][]);
ST(n);
mp.clear();
for(int i = ; i <= n ; ++i) {
int l , r , temp = i , gcd = dp[i][] , s = i;
do {
l = temp , r = n;
s = l , gcd = rmq(i , s);
while(l <= r) {
int mid = (l + r) / ;
temp = mid;
if(rmq(i , mid) < gcd) {
r = mid - ;
temp = mid - ;
}
else {
l = mid + ;
}
}
mp[gcd] += (LL)(temp - s + );
temp++;
}while(temp <= n);
}
printf("Case #%d:\n" , ca);
scanf("%d" , &q);
while(q--) {
scanf("%d %d" , &u , &v);
int gcd = rmq(u , v);
printf("%d %lld\n" , gcd , mp[gcd]);
}
}
return ;
}
HDU 5726 GCD (RMQ + 二分)的更多相关文章
- hdu 5726 GCD 倍增+ 二分
题目链接 给n个数, 定义一个运算f[l,r] = gcd(al, al+1,....ar). 然后给你m个询问, 每次询问给出l, r. 求出f[l, r]的值以及有多少对l', r' 使得f[l, ...
- HDU 5726 GCD 区间GCD=k的个数
GCD Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5726 GCD (2016多校、二分、ST表处理区间GCD、数学)
题目链接 题意 : 给出一个有 N 个数字的整数数列.给出 Q 个问询.每次问询给出一个区间.用 ( L.R ) 表示.要你统计这个整数数列所有的子区间中有多少个和 GCD( L ~ R ) 相等.输 ...
- hdu 3486 Interviewe (RMQ+二分)
Interviewe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU 5726 GCD(RMQ+二分)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5726 题意:给出一串数字,现在有多次询问,每次询问输出(l,r)范围内所有数的gcd值,并且输出有多 ...
- hdu 5726 GCD 暴力倍增rmq
GCD/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence ...
- HDU 5726 GCD(ST&RMQ)
题目链接 GCD 先ST倍增预处理,f[i][j]表示从i开始(包含第i个数)的连续2^j个数的最大公约数. 这样就可以在O(1)内询问得到a[l]到a[r]之间的所有数的最大公约数的值. 然后对于每 ...
- 2016 Multi-University Training Contest 1 GCD RMQ+二分(预处理)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726 题意:有N(N <= 100,000),之后有Q(Q <= 100,000)个区间查询[ ...
- HDU 5726 GCD (2016 Multi-University Training Contest 1)
Time Limit: 5000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Description Give y ...
随机推荐
- Codeforces Round #248 (Div. 2) C. Ryouko's Memory Note (vector 替换)
题目链接 题意:给m个数字, 这些数字都不大于 n, sum的值为相邻两个数字 差的绝对值.求这n个数字里把一个数字 用 其中另一个数字代替以后, 最小的sum值. 分析:刚开始以为两个for 最坏 ...
- 信息:Could not publish server configuration for Tomcat v6.0 Server at localhost. Multiple Context
需要把server.xml更正一下,去掉重复的context.或者把整个server文件夹都删掉,重新添加服务器.也可以在server窗口中删除server,再新添加一个server.
- 函数fil_io
/********************************************************************//** Reads or writes data. This ...
- overload和override
Overload是重载的意思,Override是覆盖的意思,也就是重写. 重载Overload表示同一个类中可以有多个名称相同的方法,但这些方法的参数列表各不相同(即参数个数或类型不同). 重写Ove ...
- Asp.Net读写XML简单方法
xml文件 <?xml version="1.0" encoding="utf-8"?> <book> <title>web ...
- C语言深入学习系列 - 字节对齐&内存管理
用C语言写程序时需要知道是大端模式还是小端模式. 所谓的大端模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中:所谓的小端模式,是指数据的低位保存在内存的低地址中,而数据的高 ...
- erlang reduction
“首先明确一点,Erlang的process的调度是抢占式的,而非couroutine的协作式的.其次,Erlang早期版本是只有一个调度器,运行在一个线程上,随着erts的发展,现在erlang的调 ...
- eclipse 下生成jar包
eclipse 下生成jar包 第一:普通类导出jar包,我说的普通类就是指此类包含main方法,并且没有用到别的jar包. 1.在eclipse中选择你要导出的类或者package,右击,选择Exp ...
- 用NSData和NSFileManager保存内存中的对象
曾经接触过iOS开发,并且开发过两个应用,纵然青涩,也算是一断美好的回忆.转眼就已经一年多了!现在回过头来决定再次拿起iOS开发. 下面讲NSData: NSdata的概念 1.使用文件时需要频繁地将 ...
- fzu 1675 The Seventy-seven Problem
给你长度为 10^5~10^6长度,由数字组成的串 其中有4位不见了 补全该串 使得在该串能整除 77的同时 尽可能大// 先计算出每个 n*10^m 模 77 的循环节 n=0,1,2..,9// ...