C. Crazy Town
 

Crazy Town is a plane on which there are n infinite line roads. Each road is defined by the equation aix + biy + ci = 0, where ai and bi are not both equal to the zero. The roads divide the plane into connected regions, possibly of infinite space. Let's call each such region a block. We define an intersection as the point where at least two different roads intersect.

Your home is located in one of the blocks. Today you need to get to the University, also located in some block. In one step you can move from one block to another, if the length of their common border is nonzero (in particular, this means that if the blocks are adjacent to one intersection, but have no shared nonzero boundary segment, then it are not allowed to move from one to another one in one step).

Determine what is the minimum number of steps you have to perform to get to the block containing the university. It is guaranteed that neither your home nor the university is located on the road.

Input

The first line contains two space-separated integers x1, y1 ( - 106 ≤ x1, y1 ≤ 106) — the coordinates of your home.

The second line contains two integers separated by a space x2, y2 ( - 106 ≤ x2, y2 ≤ 106) — the coordinates of the university you are studying at.

The third line contains an integer n (1 ≤ n ≤ 300) — the number of roads in the city. The following n lines contain 3 space-separated integers ( - 106 ≤ ai, bi, ci ≤ 106; |ai| + |bi| > 0) — the coefficients of the line aix + biy + ci = 0, defining the i-th road. It is guaranteed that no two roads are the same. In addition, neither your home nor the university lie on the road (i.e. they do not belong to any one of the lines).

Output

Output the answer to the problem.

Sample test(s)
Input
1 1
-1 -1
2
0 1 0
1 0 0
Output
2
Input
1 1
-1 -1
3
1 0 0
0 1 0
1 1 -3
Output
2
Note

Pictures to the samples are presented below (A is the point representing the house; B is the point representing the university, different blocks are filled with different colors):

POINT:

  1.判断直线与线段是否相交即判断线段两端点是否在直线两侧;

  注意此题不能直接判断,因为乘积可能long long越界;

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<algorithm>
#include<map>
using namespace std;
const int maxn = ; struct Node
{
long long x, y;
}p1, p2;
int n;
int main()
{
scanf("%I64d%I64d%I64d%I64d", &p1.x, &p1.y, &p2.x, &p2.y);
scanf("%d", &n);
long long cnt = ;
for(int i = ; i < n; i++)
{
long long a, b, c;
scanf("%I64d%I64d%I64d", &a, &b, &c);
long long t1 = (a*p1.x + b*p1.y + c);
long long t2 = (a*p2.x + b*p2.y + c);
// 此处不能直接判断: long long 越界 !
if( (t1> && t2<) || (t1< && t2>) ) cnt++;
}
printf("%I64d\n", cnt);
return ;
}

#284 div.2 C.Crazy Town的更多相关文章

  1. Codeforces Round #284 (Div. 1) A. Crazy Town 计算几何

    A. Crazy Town 题目连接: http://codeforces.com/contest/498/problem/A Description Crazy Town is a plane on ...

  2. Codeforces Round #284 (Div. 2)A B C 模拟 数学

    A. Watching a movie time limit per test 1 second memory limit per test 256 megabytes input standard ...

  3. Codeforces Round #284 (Div. 1)

    A. Crazy Town 这一题只需要考虑是否经过所给的线,如果起点和终点都在其中一条线的一侧,那么很明显从起点走点终点是不需要穿过这条线的,否则则一定要经过这条线,并且步数+1.用叉积判断即可. ...

  4. Codeforces Round #284 (Div. 2)

    题目链接:http://codeforces.com/contest/499 A. Watching a movie You have decided to watch the best moment ...

  5. C - Crazy Town

    Problem description Crazy Town is a plane on which there are n infinite line roads. Each road is def ...

  6. Codeforces 498A Crazy Town

    C. Crazy Town time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  7. A. Crazy Town

    Crazy Town is a plane on which there are n infinite line roads. Each road is defined by the equation ...

  8. Codeforces Round #372 (Div. 2) A .Crazy Computer/B. Complete the Word

    Codeforces Round #372 (Div. 2) 不知不觉自己怎么变的这么水了,几百年前做A.B的水平,现在依旧停留在A.B水平.甚至B题还不会做.难道是带着一种功利性的态度患得患失?总共 ...

  9. Codeforces Round #284 (Div. 2) C题(计算几何)解题报告

    题目地址 简要题意: 给出两个点的坐标,以及一些一般直线方程Ax+B+C=0的A.B.C,这些直线作为街道,求从一点走到另一点需要跨越的街道数.(两点都不在街道上) 思路分析: 从一点到另一点必须要跨 ...

随机推荐

  1. 进程隐藏与进程保护(SSDT Hook 实现)(一)

    读了这篇文章终于明白大致怎么回事了 文章目录:                   1. 引子 – Hook 技术: 2. SSDT 简介: 3. 应用层调用 Win32 API 的完整执行流程: 4 ...

  2. 【Spark学习】Spark 1.1.0 with CDH5.2 安装部署

    [时间]2014年11月18日 [平台]Centos 6.5 [工具]scp [软件]jdk-7u67-linux-x64.rpm spark-worker-1.1.0+cdh5.2.0+56-1.c ...

  3. HW7.1

    import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner i ...

  4. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  5. C语言的格式控制符

    1.         格式控制符 格式输出printf 作用是向终端输出若干个类型任意的数据. 格式:printf (格式控制符,输出列表) 1)         格式控制符 l          % ...

  6. android中OnItemClickListener的参数解释

    @Override public void onItemClick(AdapterView<?> parent, View view, int position, long id) {} ...

  7. ST-Link 驱动安装

    电脑中可以预先安装一个ST Visual Programmer 这个直接带STLink驱动或是安装一个STM32 ST-Link Uitilty 然后选择自安安装 点出下一步 在弹出的对话框选择“仍然 ...

  8. Android模拟器访问本地的apache tomcat服务

    1. 在官网http://tomcat.apache.org/上下载tomcat,根据自己的电脑下载相应的文件 2.将apache-tomcat-6.0.37-windows-x64.zip包解压到本 ...

  9. hdu 4612 (双联通+树形DP)

    加一条边后最少还有多少个桥,先Tarjan双联通缩点, 然后建树,求出树的直径,在直径起点终点加一条边去的桥最多, #pragma comment(linker, "/STACK:10240 ...

  10. ASP.NET MVC- EF基础

    EF是在ADO.NET的基础上做进一步封装,以后如果做新的项目我可能会考虑不用ADO.NET,而用EF. 其实很久以前我就接触过EF,可是太久没用,有些忘记了,前几天重温,也做了一点笔记.记录如下: ...