题意:
原来袋子里有w只白鼠和b只黑鼠
龙和王妃轮流从袋子里抓老鼠。谁先抓到白色老师谁就赢。
王妃每次抓一只老鼠,龙每次抓完一只老鼠之后会有一只老鼠跑出来。
每次抓老鼠和跑出来的老鼠都是随机的。
如果两个人都没有抓到白色老鼠则龙赢。王妃先抓。
问王妃赢的概率。
解析:
设dp[i][j]表示现在轮到王妃抓时有i只白鼠,j只黑鼠,王妃赢的概率
明显 dp[0][j]=0,0<=j<=b;因为没有白色老鼠了
      dp[i][0]=1,1<=i<=w;因为都是白色老鼠,抓一次肯定赢了。
      dp[i][j]可以转化成下列四种状态:
      1、王妃抓到一只白鼠,则王妃赢了,概率为i/(i+j);
      2、王妃抓到一只黑鼠,龙抓到一只白色,则王妃输了,概率为j/(i+j)*i/(i+j-1).
      3、王妃抓到一只黑鼠,龙抓到一只黑鼠,跑出来一只黑鼠,则转移到dp[i][j-3]。
      概率为j/(i+j)*(j-1)/(i+j-1)*(j-2)/(i+j-2);
      4、王妃抓到一只黑鼠,龙抓到一只黑鼠,跑出来一只白鼠,则转移到dp[i-1][j-2].
      概率为j/(i+j)*(j-1)/(i+j-1)*i/(i+j-2);
      当然后面两种情况要保证合法,即第三种情况要至少3只黑鼠,第四种情况要至少2只白鼠

代码如下:

 #include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<vector>
#define ll __int64
#define pi acos(-1.0)
#define MAX 50000
using namespace std;
double dp[][];
int main(){
int w,b,i,j;
while(cin>>w>>b){
for(i=;i<=w;i++) dp[i][]=;
for(i=;i<=b;i++) dp[][i]=;
for(i=;i<=w;i++)
for(j=;j<=b;j++){
dp[i][j]=1.0*i/(i+j);
if(j>=)
dp[i][j]+=1.0*j/(i+j)*(j-)/(i+j-)*(j-)/(i+j-)*dp[i][j-];
if(j>=)
dp[i][j]+=1.0*j/(i+j)*(j-)/(i+j-)*i/(i+j-)*dp[i-][j-];
}
printf("%.9lf\n",dp[w][b]);
}
return ;
}

cf 148D 概率DP的更多相关文章

  1. codeforces 148D 概率DP

    题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢. 王妃每次抓一仅仅老鼠,龙每次抓完一仅仅老鼠之后会有一仅仅老鼠跑出来. 每次抓老鼠和跑出来的老鼠都是随 ...

  2. CF 148D Bag of mice【概率DP】

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...

  3. CF 148D D Bag of mice (概率dp)

    题目链接 D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  5. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  6. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

  7. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  8. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  9. 概率dp部分题目

    记录一些比较水不值得单独写一篇blog的概率dp题目 bzoj3036 绿豆蛙的归宿 Description 随着新版百度空间的下线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 给出一个有向 ...

随机推荐

  1. 重建Mac系统的文件打开方式

    /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/LaunchServices.framework/Ver ...

  2. Contest1065 - 第四届“图灵杯”NEUQ-ACM程序设计竞赛(个人赛)E粉丝与分割平面

    题目描述 在一个平面上使用一条直线最多可以将一个平面分割成两个平面,而使用两条直线最多可将平面分割成四份,使用三条直线可将平面分割成七份--这是个经典的平面分割问题,但是too simple,作为一个 ...

  3. 阅读《Oracle内核技术揭秘》的读书笔记

    阅读<Oracle内核技术揭秘>,对oracle的内存结构.锁.共享池.undo.redo等整理成了如下的思维导图:

  4. L006-oldboy-mysql-dba-lesson06

    L006-oldboy-mysql-dba-lesson06 数据清理状态,先标记update table state=1,再删除. myisam没外键,硬件,并发,锁表力度,不支持事务,OLAP. ...

  5. android SDK Manager更新不了,出现错误提示:"Failed to fetch URL..."!

    可以用以下办法解决: 使用SDK Manager更新时出现问题 Failed to fetch URL https://dl-ssl.google.com/android/repository/rep ...

  6. canvas 的学习

    canvas 绘制直线的API有: 1.moveTo()起点坐标. 2.lineTo()绘制的直线 3. fillStyle以及 flii()是绘制实体的 4. strokeStyle 和stroke ...

  7. mysql 拷贝表插入新的表

    insert into table1 select * from table; insert into talble set name  = value;

  8. PHPCMS 错误日志 Only variables should be passed by ...

    有几个网站是PHPCMS V9做的,但这两天发现一个问题,PHPCMS 的错误日志超过了20M ,后台报警,然后我看了下错误日志,其中两万多行都是一个错误,错误信息如下: 1 <?php exi ...

  9. Delphi摄像头操作

    /*Title:Delphi摄像头操作 *Author:Insun *Blog:http://yxmhero1989.blog.163.com *From:www.4safer.com */ 为了笔耕 ...

  10. Demo学习: DownloadDemo

    DownloadDemo 学习文件下载 1. 几个获取临时路径的函数: UniServerModule.TempFolderURL  //当前程序路径下"Temp"文件夹: Uni ...