Description

FGD 想从成都去上海旅游。在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情。经过这些城市的顺序不是完全随意的,比如说 FGD 不希望在刚吃过一顿大餐之后立刻去下一个城市登山,而是希望去另外什么地方喝下午茶。幸运的是,FGD 的旅程不是既定的,他可以在某些旅行方案之间进行选择。由于 FGD 非常讨厌乘车的颠簸,他希望在满足他的要求的情况下,旅行的距离尽量短,这样他就有足够的精力来欣赏风景。整个城市交通网络包含 N 个城市以及城市与城市之间的双向道路 M 条。城市自 1 至 N 依次编号,道路亦然。没有从某个城市直接到它自己的道路,两个城市之间最多只有一条道路直接相连,但可以有多条连接两个城市的路径。任意两条道路如果相遇,则相遇点也必然是这 N 个城市之一,在中途,由于修建了立交桥和下穿隧道,道路是不会相交的。每条道路都有一个固定长度。在中途,FGD 想要经过 K(K<=N-2)个城市。成都编号为 1,上海编号为 N,而 FGD 想要经过的 N 个城市编号依次为 2,3,...,K+1。举例来说,假设交通网络如下图。FGD 想要经过城市 2,3,4,5,并且在 2 停留的时候在 3 之前,而在 4,5 停留的时候在 3 之后。那么最短的旅行方案是1-2-4-3-4-5-8 , 总长度为 19。注意 FGD 为了从城市 2 到城市 4 可以路过城市 3,但不在城市 3 停留。这样就不违反 FGD 的要求了。并且由于 FGD 想要走最短的路径,因此这个方案正是 FGD需要的。

Input

第一行包含 3 个整数 N(2<=N<=20000),M(1<=M<=200000),K(0<=K<=20),意义如上所述。以下 M 行,每行包含 3 个整数 X,Y,Z,(1<=X<y<=n, 1<="Z=1000)表示城市 X与 Y 之间有一条双向道路。你可以认为输入文件使得一定能自成都到上海以及任何 FGD 想要去的城市。"下一行包含一个整数 G(0<=G<=K*(K-1)/2)。以下 G 行,每行包含 2 个整数 X Y,(2<=X,Y<=K+1)表示 FGD 想要在游览城市Y 之前,一定要游览城市 X。你可以认为至少存在一种满足所有限制的游览方案。

Output

只包含一行,包含一个整数,表示最短的旅行距离。

Sample Input

8 15 4

1 2 3

1 3 4

1 4 4

1 6 2

1 7 3

2 3 6

2 4 2

2 5 2

3 4 3

3 6 3

3 8 6

4 5 2

4 8 6

5 7 4

5 8 6

3

2 3

3 4

3 5

Sample Output

19

Hint

下面对应于题目中给出的例子。

Solution

看到k非常小,就可以想到状态压缩的动态规划(先例:售货员的难题)。设f[i][j]表示经过的1到k+1的点的集合为i,当前所在点为j时的最短路径。那么有如下状态转移方程:

\[f[i|(1<<l)][l]=min(f[i][j]+dis[j][l],f[i|(1<<l)][l])
\]

其中dis[j][l]表示从j到l的最短路径,那么为了判断一个点是否满足其先要访问的点的条件,可以用g[i]表示一个点i的所有前驱节点集合(同样用状态压缩),如果在状态转移方程中满足i&g[i]=g[i],就说明可行 。dis数组可以用SPFA跑出来。动态规划完成后,由于没有将第n个点计算在内,所以最终的答案为:

\[ans=max(f[1<<k][i]+dis[i][n])_{i=1,2,...,k+1}
\]

另外,为了表示方便和节省空间,第i个点在二进制集合中的位置可设为i-2,这样就可以从第0位开始表示了。

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#define N 20002
#define M 200002
#define int long long
using namespace std;
int head[N],ver[M*2],nxt[M*2],edge[M*2],l;
int n,m,k,c,i,j,d[22][22],dis[N],f[1048576][22],g[22];
bool in[N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
void insert(int x,int y,int z)
{
l++;
ver[l]=y;
edge[l]=z;
nxt[l]=head[x];
head[x]=l;
}
void SPFA(int s)
{
queue<int> q;
memset(in,0,sizeof(in));
memset(dis,0x3f,sizeof(dis));
q.push(s);
in[s]=1;
dis[s]=0;
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=head[x];i;i=nxt[i]){
int y=ver[i];
if(dis[y]>dis[x]+edge[i]){
dis[y]=dis[x]+edge[i];
if(!in[y]){
q.push(y);
in[y]=1;
}
}
}
in[x]=0;
}
for(int i=1;i<=k+1;i++) d[s][i]=dis[i];
d[s][k+2]=dis[n];
}
signed main()
{
freopen("atr.in","r",stdin);
freopen("atr.out","w",stdout);
n=read();m=read();k=read();
for(i=1;i<=m;i++){
int u,v,w;
u=read();v=read();w=read();
insert(u,v,w);
insert(v,u,w);
}
c=read();
for(i=1;i<=c;i++){
int x,y;
x=read();y=read();
g[y]|=(1<<(x-2));
}
for(i=1;i<=k+1;i++) SPFA(i);
memset(f,-1,sizeof(f));
f[0][1]=0;
for(i=0;i<=(1<<k)-1;i++){
for(j=1;j<=k+1;j++){
if(f[i][j]!=-1){
for(l=2;l<=k+1;l++){
if((i&g[l])==g[l]){
if(f[i|(1<<(l-2))][l]==-1) f[i|(1<<(l-2))][l]=f[i][j]+d[j][l];
else f[i|(1<<(l-2))][l]=min(f[i|(1<<(l-2))][l],f[i][j]+d[j][l]);
}
}
}
}
}
int ans=1<<30;
for(i=1;i<=k+1;i++){
if(f[(1<<k)-1][i]!=-1) ans=min(ans,f[(1<<k)-1][i]+d[i][k+2]);
}
cout<<ans<<endl;
fclose(stdin);
fclose(stdout);
return 0;
}

Test 3.27 T2 旅行的更多相关文章

  1. 【NOIP2016练习】T2 旅行(树形DP,换根)

    题意:小C上周末和他可爱的同学小A一起去X湖玩. X湖景区一共有n个景点,这些景点由n-1条观光道连接着,从每个景点开始都可以通过观光道直接或间接地走到其他所有的景点.小C带着小A从1号景点开始游玩. ...

  2. NOIP模拟17.9.22

    NOIP模拟17.9.22 前进![问题描述]数轴的原点上有一只青蛙.青蛙要跳到数轴上≥

  3. python中的thread

    转载自: http://blog.sina.com.cn/s/blog_9f488855010198vn.html 正确与否未验证 python中得thread的一些机制和C/C++不同:在C/C++ ...

  4. 【JDK源码分析】String的存储区与不可变性

    // ... literals are interned by the compiler // and thus refer to the same object String s1 = " ...

  5. java多线程系类:基础篇:04synchronized关键字

    概要 本章,会对synchronized关键字进行介绍.涉及到的内容包括:1. synchronized原理2. synchronized基本规则3. synchronized方法 和 synchro ...

  6. 二模01day1解题报告

    T1.音量调节(changingsounds) 有n个物品的背包(有点不一样,每个物品必须取),给出初始价值,物品价值可正可负(就是两种选择嘛),求可能的最大价值,不可能(<0或>maxs ...

  7. C# 线程间互相通信

    C#线程间互相通信主要用到两个类:AutoResetEvent和ManualResetEvent. 一.AutoResetEvent AutoResetEvent 允许线程通过发信号互相通信,线程通过 ...

  8. Linux 常用命令解析和Bash Shell使用示例脚本演示

     摘要 Linux命令是基于文本格式输入输出的一种程序,依照Unix哲学中强调的程序功能简单,输入宽松,输出严谨,各种程序组合能够具有更强大的功能,而具有这样的灵活性的主要原因是Linux规定程序 ...

  9. JAVA编程思想(2) - 操作符(一)

    "在最底层,Java中的数据是通过操作符来操作的." 1. 使用Java操作符 -操作符接受一个或者多个參数,并生成一个新值,參数的形式与普通的方法调用不用,但效果是同样的.加号和 ...

随机推荐

  1. openocd安装与调试

    环境: 硬件:PC机<------>ARM仿真器v8.00<------>已下载好bit流的Xinlinx SoC开发板(其上有arm cortex-a9核) 软件:Redha ...

  2. redis和memcached的对比与选型

    相似处:     1:Memcached与Redis都属于内存内.键值数据存储方案.均属于NoSQL家族,而且都基于同样的键值数据模型.双方都选择将全部数据保存在内存当中,这自然也就让它们成为非常理想 ...

  3. Java各类型占字节数

    byte 1字节short 2字节int 4字节long 8字节float 4字节double 8字节char 2字节boolean 1字节 其中,换算关系: 1GB=1024MB 1MB=1024K ...

  4. value_counts()函数

    value_counts函数用于统计dataframe或series中不同数或字符串出现的次数 ascending=True时,按升序排列. normalize=True时,可计算出不同字符出现的频率 ...

  5. jvm jstack log分析工具,在线分析

    http://spotify.github.io/threaddump-analyzer Spotify提供的Web版在线分析工具,可以将锁或条件相关联的线程聚合到一起.

  6. 删除C:\Program Files (x86)\Common Files\baidu 等误装软件且正常模式删不掉的文件夹

    ---------方法一-------- C:\Program Files\Common Files\Baidu\BaiduProtect\1.1.0.26打开以上路径找到反注册程序uninst.ex ...

  7. Python笔记(二十九)_模块

    模块 在Python中,一个.py文件就是一个模块 if __name__ == '__main__':所有模块都有一个 __name__ 属性,__name__ 的值取决于如何应用模块 run当前文 ...

  8. spring包

    下载的spring包中文件及各种包众多,在项目中往往只有部分是我们必须的,如果不清楚什么时候需要什么包的话,看看下面就知道了. aspectj目录 下是在Spring框架下使用aspectj的源代码和 ...

  9. codeforces#1215E. Marbles(状压DP)

    题目大意:给出一个由N个整数组成的序列,通过每次交换相邻的两个数,使这个序列的每个相同的数都相邻.求最小的交换次数. 比如给出序列:1 2 3 2 1 ,那么最终序列应该是 1 1 2 2 3 ,最小 ...

  10. 整理那些用于基本生存的shell命令

    变量定义相关的 export export可以将临时定义的变量定义成环境变量 比如在一个shell中临时定义的一个变量就没法在新打开的那个shell中继续再使用 使用export之后 这个变量就变成了 ...