Codeforces Breaking Good
Breaking Good
time limit per test 2 seconds
memory limit per test 256 megabytes
Breaking Good is a new video game which a lot of gamers want to have. There is a certain level in the game that is really difficult even for experienced gamers.
Walter William, the main character of the game, wants to join a gang called Los Hermanos (The Brothers). The gang controls the whole country which consists of n cities with m bidirectional roads connecting them. There is no road is connecting a city to itself and for any two cities there is at most one road between them. The country is connected, in the other words, it is possible to reach any city from any other city using the given roads.
The roads aren't all working. There are some roads which need some more work to be performed to be completely functioning.
The gang is going to rob a bank! The bank is located in city 1. As usual, the hardest part is to escape to their headquarters where the police can't get them. The gang's headquarters is in city n. To gain the gang's trust, Walter is in charge of this operation, so he came up with a smart plan.
First of all the path which they are going to use on their way back from city 1 to their headquarters n must be as short as possible, since it is important to finish operation as fast as possible.
Then, gang has to blow up all other roads in country that don't lay on this path, in order to prevent any police reinforcements. In case of non-working road, they don't have to blow up it as it is already malfunctional.
If the chosen path has some roads that doesn't work they'll have to repair those roads before the operation.
Walter discovered that there was a lot of paths that satisfied the condition of being shortest possible so he decided to choose among them a path that minimizes the total number of affected roads (both roads that have to be blown up and roads to be repaired).
Can you help Walter complete his task and gain the gang's trust?
Input
The first line of input contains two integers n, m (2 ≤ n ≤ 105, ), the number of cities and number of roads respectively.
In following m lines there are descriptions of roads. Each description consists of three integers x, y, z (1 ≤ x, y ≤ n, ) meaning that there is a road connecting cities number x and y. If z = 1, this road is working, otherwise it is not.
Output
In the first line output one integer k, the minimum possible number of roads affected by gang.
In the following k lines output three integers describing roads that should be affected. Each line should contain three integers x, y, z (1 ≤ x, y ≤ n, ), cities connected by a road and the new state of a road. z = 1 indicates that the road between cities x and y should be repaired and z = 0 means that road should be blown up.
You may output roads in any order. Each affected road should appear exactly once. You may output cities connected by a single road in any order. If you output a road, it's original state should be different from z.
After performing all operations accroding to your plan, there should remain working only roads lying on some certain shortest past between city 1 and n.
If there are multiple optimal answers output any.
Examples
input
2 1
1 2 0
output
1
1 2 1
input
4 4
1 2 1
1 3 0
2 3 1
3 4 1
output
3
1 2 0
1 3 1
2 3 0
input
8 9
1 2 0
8 3 0
2 3 1
1 4 1
8 7 0
1 5 1
4 6 1
5 7 0
6 8 0
output
3
2 3 0
1 5 0
6 8 1
Note
In the first test the only path is 1 - 2
In the second test the only shortest path is 1 - 3 - 4
In the third test there are multiple shortest paths but the optimal is 1 - 4 - 6 - 8
大概意思就是给定 n 个点, m 条边的有向图,边权都为 1,一些需要维修。
你需要选择1条 1 到 n 的最短路,将它们修好,并炸毁其它所
有不在路径上的完好的路。
若有多条最短路,选择影响值最小的。
影响值 = 维修的路数 + 炸毁的路数。
我大概想了一下,应该就是找一条最短路上的边权最大。。。
然后这个dp是按照dis转移的,必须是dis + 1才可以满足最短路。。。
但是好像可以分层图啥的。。。不会啊
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
struct lpl{
int to, dis;
}lin, from[maxn];
struct ld{
int a, b;
bool operator < (const ld &A)const{
if(a == A.a) return b < A.b;
return a < A.a;
}
}asd;
int n, m, r, sum, dis[maxn], f[maxn];
bool vis[maxn];
vector<int> edge[maxn];
vector<lpl> point[maxn];
queue<int> q;
set<ld> s;
inline void putit()
{
scanf("%d%d", &n, &m);
for(int a, b, i = 1; i <= m; ++i){
scanf("%d%d%d", &a, &b, &lin.dis); sum += lin.dis;
edge[a].push_back(b); edge[b].push_back(a);
lin.to = b; point[a].push_back(lin);
lin.to = a; point[b].push_back(lin);
}
}
inline void spfa()
{
int now, qwe; q.push(1); memset(dis, 0x3f, sizeof(dis)); dis[1] = 0;
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = false;
for(int i = edge[now].size() - 1; i >= 0; --i){
qwe = edge[now][i];
if(dis[qwe] > dis[now] + 1){
dis[qwe] = dis[now] + 1;
if(!vis[qwe]){
vis[qwe] = true; q.push(qwe);
}
}
}
}
}
int dp(int t)
{
if(vis[t]) return f[t];
vis[t] = true;
for(int i = point[t].size() - 1; i >= 0; --i){
int now = point[t][i].to;
if(dis[t] != dis[now] + 1) continue;
if(f[t] <= dp(now) + point[t][i].dis){
f[t] = f[now] + point[t][i].dis;
from[t].to = now; from[t].dis = point[t][i].dis;
}
}
return f[t];
}
inline void workk()
{
printf("%d\n", sum + dis[n] - 2 * dp(n)); int t = n;
while(t != 1){
asd.a = t; asd.b = from[t].to;
if(asd.a > asd.b) swap(asd.a, asd.b); s.insert(asd); t = from[t].to;
}
for(int i = 1; i <= n; ++i){
for(int j = point[i].size() - 1; j >= 0; --j){
lin = point[i][j]; if(lin.to > i) continue;
asd.a = lin.to; asd.b = i;
if(s.count(asd)){
if(!lin.dis) printf("%d %d 1\n", asd.a, asd.b);
}
else{
if(lin.dis) printf("%d %d 0\n", asd.a, asd.b);
}
}
}
}
int main()
{
putit();
spfa();
workk();
return 0;
}
Codeforces Breaking Good的更多相关文章
- Codeforces Round #287 (Div. 2) E. Breaking Good 最短路
题目链接: http://codeforces.com/problemset/problem/507/E E. Breaking Good time limit per test2 secondsme ...
- Codeforces Round #287 (Div. 2) E. Breaking Good [Dijkstra 最短路 优先队列]
传送门 E. Breaking Good time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- [Codeforces 507E] Breaking Good
[题目链接] https://codeforces.com/contest/507/problem/E [算法] 首先BFS求出1到其余点的最短路 , N到其余点的最短路,记为distA[]和dist ...
- CodeForces 507E Breaking Good 2维权重dij
Breaking Good 题解: 2维权重dij, 先距离最短, 后改变最小. 在这个题中, 如果要改变最小, 则让更多的可用边放进来. 然后可以用pre存下关键边. 代码: ...
- Codeforces Round #287 (Div. 2) E. Breaking Good 路径记录!!!+最短路+堆优化
E. Breaking Good time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Doors Breaking and Repairing CodeForces - 1102C (思维)
You are policeman and you are playing a game with Slavik. The game is turn-based and each turn consi ...
- 【codeforces 507E】Breaking Good
[题目链接]:https://vjudge.net/contest/164884#problem/D [题意] 给你一张图; 图中有些路是完好的;但有些路还没修好; 先不管路有没有修好; 问你从起点到 ...
- Codeforces Round #531 (Div. 3) C. Doors Breaking and Repairing (博弈)
题意:有\(n\)扇门,你每次可以攻击某个门,使其hp减少\(x\)(\(\le 0\)后就不可修复了),之后警察会修复某个门,使其hp增加\(y\),问你最多可以破坏多少扇门? 题解:首先如果\(x ...
- Codeforces Educational Codeforces Round 15 D. Road to Post Office
D. Road to Post Office time limit per test 1 second memory limit per test 256 megabytes input standa ...
随机推荐
- simple_pt时遇到的问题
elf.c:30:18: fatal error: gelf.h: No such file or directory 安装libelf-dev 遇到找不到ldwarf apt-cache sear ...
- unity ui坐标系转换
世界坐标: transform.position获取的是世界坐标 屏幕坐标: 单位像素 屏幕左下角(0,0)右上角(Screen.width,Screen.height) Screen.width = ...
- ActiveMQ修改端口号
1.修改tcp端口号 安装目录下的conf/activemq.xml 2.修改管理页面的访问端口号 安装目录下的conf/jetty.xml
- ORACLE 查询所有表、外键、主键等信息
Select a.Owner 外键拥有者, a.Table_Name 外键表, c.Column_Name 外键列, b.Owner 主键拥有者, b.Table_Name 主键表, d.Colu ...
- Docker的使用(未完待续)
一.帮助命令 docker version docker info docker --help 二.镜像命令 列出机器上所有的镜像 docker images 查找某个镜像 docker search ...
- 【LeetCode】设计题 design(共38题)
链接:https://leetcode.com/tag/design/ [146]LRU Cache [155]Min Stack [170]Two Sum III - Data structure ...
- 【串线篇】SQL映射文件-resultMap自定义封装
mybatis默认封装规则: 1).按照列明和属性名一一对应的规则(不区分大小写) 2).如果不一一对应: 1).开启驼峰命名(数据库aaa_bbb, 程序中aaaBbb) 2).起别名 3).自定义 ...
- LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演
题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...
- 线程池(ThreadPool)创建
线程池创建方式jdk1.5 Java通过Executors(jdk1.5并发包)提供四种线程池,分别为: newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活 ...
- @PostMapping
@PostMapping映射一个POST请求 Spring MVC新特性 提供了对Restful风格的支持 @GetMapping,处理get请求 @PostMapping,处理post请求 @Put ...