https://ac.nowcoder.com/acm/contest/907/C

链接:https://ac.nowcoder.com/acm/contest/907/C
来源:牛客网

题目描述

Rabbit得到了一个长度为N的数列(数列编号从0到N−1)。数列中每个数vali满足1<=vali<=C。
初始时数列中每个数均为1,现在Rabbit要对这个数列进行Q次操作,每次操作给出四个数:X Y A B,首先查询数列中值为X的个数P,然后计算出L,R:
L=(A+(P+B)2)mod N
R=(A+(P∗B)2)mod N
并将范围[min(L,R),max(L,R)]内的所有数改为Y。
最后询问经过Q次操作后数列中出现次数最多的那个数出现了几次。 

输入描述:

第一行三个整数N,C,Q。

接下来Q行,每行四个整数X,Y,A,B,表示一个操作。

输出描述:

输出一个整数,表示经过Q次操作后数列中出现次数最多的那个数出现的次数。
示例1

输入

复制

4 2 1
2 2 1 1

输出

复制

2

分析:我们可以维护一个区间最大最小值,这样就可以在log的时间内知道值为x 的个数有多少的 。因为mn[x]=mx[x] 表示这个区间都为Y,故无需在向下查找
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+;
typedef long long ll;
int vis[maxn];
int lazy[maxn*],mx[maxn*],mn[maxn*]; void pushdown(int id,int l,int r)
{
if(lazy[id])
{
mx[id]=mn[id]=lazy[id];
if(l!=r)
{
lazy[id<<|]=lazy[id<<]=lazy[id];
mx[id<<]=mx[id<<|]=lazy[id];
mn[id<<]=mn[id<<|]=lazy[id];
}
lazy[id]=;
}
}
void update(int id,int l,int r,int ql,int qr,int v)
{
pushdown(id,l,r);
if(ql<=l&&r<=qr&&mx[id]==mn[id])
{
vis[mx[id]]-=(r-l+);
vis[v]+=(r-l+);
lazy[id]=v;
pushdown(id,l,r);
return ;
}
int mid=(l+r)>>;
if(ql<=mid) update(id<<,l,mid,ql,qr,v);
if(qr>mid) update(id<<|,mid+,r,ql,qr,v);
mx[id]=max(mx[id<<],mx[id<<|]);
mn[id]=min(mn[id<<],mn[id<<|]);
}
int main()
{ int n,c,q,x,y;
ll a,b;
scanf("%d%d%d",&n,&c,&q);
// memset(mn,1,sizeof(mn));
// memset(mx,1,sizeof(mx));
vis[]=n;
lazy[]=;
while(q--)
{
scanf("%d%d%lld%lld",&x,&y,&a,&b);
int p=vis[x];
int l=(a+(p+b)%n*(p+b)%n)%n+;
int r=(a+p*b%n*p%n*b%n)%n+;
if(l>r) swap(l,r);
update(,,n,l,r,y);
}
int ans=;
for(int i=;i<=c;i++)
ans=max(ans,vis[i]);
printf("%d\n",ans);
}

牛客 Rabbit的数列 (线段树维护值为x的个数+区间覆盖)的更多相关文章

  1. 牛客练习赛28-B(线段树,区间更新)

    牛客练习赛28 - B 传送门 题目 qn姐姐最好了~ ​ qn姐姐给你了一个长度为n的序列还有m次操作让你玩, ​ 1 l r 询问区间[l,r]内的元素和 ​ 2 l r 询问区间[l,r]内的 ...

  2. DP+线段树维护矩阵(2019牛客暑期多校训练营(第二场))--MAZE

    题意:https://ac.nowcoder.com/acm/contest/882/E 给你01矩阵,有两种操作:1是把一个位置0变1.1变0,2是问你从第一行i开始,到最后一行j有几种走法.你只能 ...

  3. 2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵

    题意 给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种 ...

  4. 牛客多校第十场 F Popping Balloons 线段树维护稀疏矩阵

    题意: 给定一个稀疏矩阵,里面有若干个气球,让你横着开三枪,竖着开三枪,问最多能打爆多少气球,要求相同方向,相邻两枪必须间隔r. 题解: 横向记录每列有多少个气球,分别在哪行上. 然后把这个数据改造成 ...

  5. Wannafly挑战赛22 D 整数序列 (线段树维护三角函数值)

    链接:https://ac.nowcoder.com/acm/contest/160/D 来源:牛客网 整数序列 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语 ...

  6. [动态dp]线段树维护转移矩阵

    背景:czy上课讲了新知识,从未见到过,总结一下. 所谓动态dp,是在动态规划的基础上,需要维护一些修改操作的算法. 这类题目分为如下三个步骤:(都是对于常系数齐次递推问题) 1先不考虑修改,不考虑区 ...

  7. 线段树维护矩阵【CF718C】 Sasha and Array

    Description 有一个长为\(n\)的数列\(a_{1},a_{2}...a_{n}\),你需要对这个数列维护如下两种操作: \(1\space l \space r\space x\) 表示 ...

  8. 51nod 1376【线段树维护区间最大值】

    引自:wonter巨巨的博客 定义 dp[i] := 以数字 i(不是下标 i)为结尾的最长上升长度 然后用线段树维护 dp[i]: 每个节点维护 2 个信息,一个是当前区间的最大上升长度,一个是最大 ...

  9. Codeforces 446C - DZY Loves Fibonacci Numbers(斐波那契数列+线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 你可能会疑惑我为什么要写 *2400 的题的题解 首先一个很明显的想法是,看到斐波那契数列和 \(10^9+9\) 就想到通项公式,\(F ...

随机推荐

  1. Java io基础

    1.什么是IO? Java IO即Java 输入输出系统.不管我们编写何种应用,都难免和各种输入输出相关的媒介打交道,其实和媒介进行IO的过程是十分复杂的,这要考虑的因素特别多,比如我们要考虑和哪种媒 ...

  2. OuterXml和InnerXml(2)

    官方例子:https://msdn.microsoft.com/en-us/library/system.xml.xmlnode.outerxml.aspx using System; using S ...

  3. 前端 CSS的继承性

    css有两大特性:继承性和层叠性 继承性 继承:给父级设置一些属性,子级继承了父级的该属性,这就是我们的css中的继承. 记住:有一些属性是可以继承下来 : color . font-*. text- ...

  4. python基础-8迭代器(iter)和生成器(yield)

    一 生成器 从Python2.2起,生成器提供了一种简洁的方式帮助返回列表元素的函数来完成简单和有效的代码. 它基于yield指令,允许停止函数并立即返回结果.此函数保存其执行上下文,如果需要,可立即 ...

  5. Struts2入门1

    Struts2的概述: Struts2是应用在Javaee三层结构中的web层.Struts2是在Struts1和webwork的基础之上发展的全新的框架.在没有使用Struts2之前,进行web层的 ...

  6. CDH平台搭建解决离线安装依赖包的方法

    背景介绍: 1CDH开发平台在搭建的过程中,会遇到各种各样的问题,其中的各种依赖就是一个很让人头痛的问题.如果安装脚本文件出现了这种问题,那么就可以把以下的这种方法加入shell中,但是不要用yum来 ...

  7. VSphere服务器ESXI4.1.0设置虚拟主机来电开机自启动

    vSphere服务器ESXI设置虚拟主机来电自启动 首先查看我自己VMware vSphere版本为4.1.0(需要在虚拟主机电源为关闭状态下编辑) 然后双击主机,点击配置---虚拟机启动/关机 点击 ...

  8. webpack打包html里的img图片

    对待css里的图片, 因为已经通过引入css文件到js,打包了,可以正常通过module.rules.test检测到,然后正常打包. 但是对于html里的图片, 这个需要安装一个插件html-with ...

  9. JS补充笔记

    <script> 函数: 普通函数: function func(){ } 匿名函数: setInterval("func()",5000); setInterval( ...

  10. C++ 编译器的安装(MinGW)

    GNU GNU是一个自由软件工程项目,GNU工程已经开发了一个被称为“GNU”(GNU是“不是UNIX”的缩写)的.对Unix向上兼容的完整的自由软件系统(free software system). ...