传送门

##解题思路
  设$f(k)$为交集元素个数为$k$的方案数。发现我们并不能直接求出$f(k)$,就考虑容斥之类的东西,容斥首先要扩大限制,再设$g(k)$表示至少有$k$个交集的方案数。$g(k)$是特别好算的,可以强制$k$个元素必选,其余的任意,那么有

\[
g(k)=\sum\limits_{i=k}^n\dbinom{n}{i}(2^{2^{n-i}}-1)
\]

用$g$来表示$f$可得

\[
g(k)=\sum\limits_{i=k}^n\dbinom{i}{k}f(i)
\]

然后二项式反演可得

\[
f(k)=\sum\limits_{i=k}^n(-1)^{i-k}\dbinom{i}{k}g(i)
\]

这样就可以算了。
但是注意刚开始预处理$g$数组时,因为指数不能取模,所以不能直接算。需要把$2^{2i}\(拆成\)(2{2^})^2$来算。

##代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath> using namespace std;
const int N=1000005;
const int MOD=1000000007;
typedef long long LL; int n,k,g[N],ans,fac[N],inv[N]; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
} int main(){
scanf("%d%d",&n,&k);fac[0]=1;int now=2;
for(int i=1;i<=n;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[n]=fast_pow(fac[n],MOD-2);
for(int i=n-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
for(int i=n;i>=k;i--){
g[i]=(LL)(now-1)%MOD;
if(g[i]<0) g[i]+=MOD;
now=(LL)now*now%MOD;
}
for(int i=k;i<=n;i++){
if(((i-k)&1)) ans+=(MOD-(LL)C(i,k)*g[i]%MOD*C(n,i)%MOD);
else ans+=(LL)C(i,k)*g[i]%MOD*C(n,i)%MOD;
ans%=MOD;
}
printf("%d\n",ans);
return 0;
}

BZOJ 2839: 集合计数(二项式反演)的更多相关文章

  1. bzoj 2839 集合计数 —— 二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...

  2. bzoj 2839 集合计数——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...

  3. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  4. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  5. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  6. BZOJ2839 集合计数 二项式反演

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2839 题解 二项式反演板子题. 类似于一般的容斥,我们发现恰好 \(k\) 个不怎么好求,但是 ...

  7. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  8. ●BZOJ 2839 集合计数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...

  9. BZOJ 2839: 集合计数 广义容斥

    在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...

随机推荐

  1. <三剑客> 老大:awk命令用法

    awk是一种编程语言,用于在linux/unix下对文本和数据进行处理.数据可以来自标准输入(stdin).一 个或多个文件,或其它命令的输出.它支持用户自定义函数和动态正则表达式等先进功能,是lin ...

  2. python 收集测试日志--格式

    Python的logging模块提供了通用的日志系统,这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP GET/POST,SMTP,Socket等,甚至可以自己实现方式记录 ...

  3. windows系统的安装时间怎么查看

    方法一:利用命令符窗口查询 直接按下Windows+R组合键  出现运行对话框(或 点击开始—运行),输入cmd,进入命令符窗口 然后,在该界面下输入”systeminfo”,然后回车,等待系统自动运 ...

  4. C#正则表达式将html代码中的所有img标签提取

    /// <summary> /// 取得HTML中所有图片的 URL. /// </summary> /// <param name="sHtmlText&qu ...

  5. BZOJ 5296: [Cqoi2018]破解D-H协议(BSGS)

    传送门 解题思路 \(BSGS\)裸题??要求的是\(g^a =A (mod\) \(p)\),设\(m\)为\(\sqrt p\),那么可以设\(a=i*m-j\),式子变成 \[ g^{i*m-j ...

  6. Docker容器数据卷volumes-from

    定义4个终端: 终端host终端container dc01终端container dc02终端container dc03各个容器之间的关系: 1.启动一个父容器dc01启动一个父容器dc01,并在 ...

  7. Linux操作系统(一)_常用命令

    1.系统工作命令 date  显示/设置系统时间或日期 date:显示时间 date -s “20190319 11:35:56”:设置时间 clock  显示设置硬件时钟 clock -s:以硬件时 ...

  8. Redis初阶

  9. js的浏览器判断方法

    使用navigator.userAgent来判断浏览器类型. 1.浏览器版本号函数: var br=navigator.userAgent.toLowerCase();   var browserVe ...

  10. MySQL分表备份

    #!/bin/bash DUMP=/usr/bin/mysqldump MYSQL=/usr/bin/mysql IPADDR=127.0.0.1 PORT=3306 USER=abc PASSWD= ...