BZOJ 2839: 集合计数(二项式反演)
##解题思路
设$f(k)$为交集元素个数为$k$的方案数。发现我们并不能直接求出$f(k)$,就考虑容斥之类的东西,容斥首先要扩大限制,再设$g(k)$表示至少有$k$个交集的方案数。$g(k)$是特别好算的,可以强制$k$个元素必选,其余的任意,那么有
g(k)=\sum\limits_{i=k}^n\dbinom{n}{i}(2^{2^{n-i}}-1)
\]
用$g$来表示$f$可得
g(k)=\sum\limits_{i=k}^n\dbinom{i}{k}f(i)
\]
然后二项式反演可得
f(k)=\sum\limits_{i=k}^n(-1)^{i-k}\dbinom{i}{k}g(i)
\]
这样就可以算了。
但是注意刚开始预处理$g$数组时,因为指数不能取模,所以不能直接算。需要把$2^{2i}\(拆成\)(2{2^})^2$来算。
##代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
const int N=1000005;
const int MOD=1000000007;
typedef long long LL;
int n,k,g[N],ans,fac[N],inv[N];
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
}
inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
}
int main(){
scanf("%d%d",&n,&k);fac[0]=1;int now=2;
for(int i=1;i<=n;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[n]=fast_pow(fac[n],MOD-2);
for(int i=n-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
for(int i=n;i>=k;i--){
g[i]=(LL)(now-1)%MOD;
if(g[i]<0) g[i]+=MOD;
now=(LL)now*now%MOD;
}
for(int i=k;i<=n;i++){
if(((i-k)&1)) ans+=(MOD-(LL)C(i,k)*g[i]%MOD*C(n,i)%MOD);
else ans+=(LL)C(i,k)*g[i]%MOD*C(n,i)%MOD;
ans%=MOD;
}
printf("%d\n",ans);
return 0;
}
BZOJ 2839: 集合计数(二项式反演)的更多相关文章
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- Bzoj 2839 集合计数 题解
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 495 Solved: 271[Submit][Status][Discuss] ...
- BZOJ2839 集合计数 二项式反演
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2839 题解 二项式反演板子题. 类似于一般的容斥,我们发现恰好 \(k\) 个不怎么好求,但是 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- BZOJ 2839: 集合计数 广义容斥
在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...
随机推荐
- wangeditor 粘贴word内容带样式
这种方法是servlet,编写好在web.xml里配置servlet-class和servlet-mapping即可使用 后台(服务端)java服务代码:(上传至ROOT/lqxcPics文件夹下) ...
- 【BZOJ2555】SubString(后缀自动机,LCT)
题意:给你一个字符串init,要求你支持两个操作 (1):在当前字符串的后面插入一个字符串 (2):询问字符串s在当前字符串中出现了几次?(作为连续子串) 你必须在线支持这些操作. 长度 <= ...
- paper 155:face/head pose estimation
参考来源:http://www.cnblogs.com/lanye/p/5312620.html 人脸姿态估计:pitch,yaw,roll三种角度,分别代表上下翻转,左右翻转,平面内旋转的角度. ...
- BZOJ 4484: [Jsoi2015]最小表示(拓扑排序+bitset)
传送门 解题思路 \(bitset\)维护连通性,给每个点开个\(bitset\),第\(i\)位为\(1\)则表示与第\(i\)位联通.算答案时显然要枚举每条边,而枚举边的顺序需要贪心,一个点先到达 ...
- CodeForces - 990G (点分治+链表计数)
题目:https://vjudge.net/contest/307753#problem/J 题意:一棵树,每个点都有个权值,现在问你,树上gcd每个不同的数有多少个 思路:点分治,首先范围只有 1e ...
- 测开之路三十:Flask基础之jinja2模板继承
实现某些位置的内容固定,某些位置的内容动态展示,如: 中文文档地址:http://docs.jinkan.org/docs/jinja2/templates.html#template-inherit ...
- do_mmap解读
1: unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 2: unsigned long len, unsigned ...
- OSG+Visual Studio2015项目变量设置;
OSG源码经过CMAKE编译后: 1.配置OSG环境变量: 用户变量的PATH中添加路径 C:\OSG\bin系统变量中添加新变量OSG_FILE_PATH为 C:\OSG\data 2.VS新建项目 ...
- luoguP3128 [USACO15DEC]最大流Max Flow 题解(树上差分)
链接一下题目:luoguP3128 [USACO15DEC]最大流Max Flow(树上差分板子题) 如果没有学过树上差分,抠这里(其实很简单的,真的):树上差分总结 学了树上差分,这道题就极其显然了 ...
- luoguP1541 乌龟棋 题解(NOIP2010)
P1541 乌龟棋 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cma ...