题目链接 : https://leetcode-cn.com/problems/n-queens-ii/

题目描述:

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回 n 皇后不同的解决方案的数量。

示例:

输入: 4
输出: 2
解释: 4 皇后问题存在如下两个不同的解法。
[
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."], ["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]

思路:

回溯算法

记录 行, 列, 正对角,负对角,不能有两个以上的棋子.

如何判断是否在对角上呢?

正对角就是相加之和一样的

负对角就是相减只差一样的


关注我的的知乎专栏,了解更多的解题技巧,共同进步!

代码:

class Solution:
def totalNQueens(self, n: int) -> int:
self.res = 0
def backtrack(i,col,z_diagonal,f_diagonal):
if i == n:return True
for j in range(n):
if j not in col and i + j not in z_diagonal and i - j not in f_diagonal:
if backtrack(i+1, col | {j}, z_diagonal |{i + j} , f_diagonal |{i - j} ) :
self.res += 1
return False
backtrack(0,set(),set(),set())
return self.res
class Solution {
int res = 0;
public int totalNQueens(int n) {
Set<Integer> col = new HashSet<>();
Set<Integer> z_diagonal = new HashSet<>();
Set<Integer> f_diagonal = new HashSet<>(); backtrack(0, n,col, z_diagonal, f_diagonal);
return res;
}
private boolean backtrack(int i, int n,Set<Integer> col, Set<Integer> z_diagonal, Set<Integer> f_diagonal) {
if (i == n) {
return true;
}
for (int j = 0; j < n; j++) {
if (!col.contains(j) && !z_diagonal.contains(i + j) && !f_diagonal.contains(i - j)) {
col.add(j);
z_diagonal.add(i + j);
f_diagonal.add(i - j);
if (backtrack(i+1,n,col,z_diagonal,f_diagonal)) res += 1;
col.remove(j);
z_diagonal.remove(i + j);
f_diagonal.remove(i - j);
}
}
return false;
}
}

[LeetCode] 52. N皇后 II的更多相关文章

  1. Java实现 LeetCode 52 N皇后 II

    52. N皇后 II n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回 n 皇后不同的解决方案 ...

  2. Leetcode之回溯法专题-52. N皇后 II(N-Queens II)

    Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int a ...

  3. leetcode 51. N皇后 及 52.N皇后 II

    51. N皇后 问题描述 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后 ...

  4. leetcode 52 N皇后问题 II

    51的简化版,省去根据排列话棋盘的工作,直接计数,代码: class Solution { public: int totalNQueens(int n) { ; vector<); dfs(n ...

  5. 【LeetCode 】N皇后II

    [问题]n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法.给定一个整数 n,返回 n 皇后不同的解决方案的数量. 示例: ...

  6. 【leetcode-51,52】 N皇后,N皇后 II

     N皇后(hard) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题 ...

  7. LeetCode Single Number I / II / III

    [1]LeetCode 136 Single Number 题意:奇数个数,其中除了一个数只出现一次外,其他数都是成对出现,比如1,2,2,3,3...,求出该单个数. 解法:容易想到异或的性质,两个 ...

  8. [array] leetcode - 40. Combination Sum II - Medium

    leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...

  9. LeetCode 137. Single Number II(只出现一次的数字 II)

    LeetCode 137. Single Number II(只出现一次的数字 II)

随机推荐

  1. Python 变量类型Ⅲ

    Python 元组 元组是另一个数据类型,类似于 List(列表). 元组用 () 标识.内部元素用逗号隔开.但是元组不能二次赋值,相当于只读列表. 以上实例输出结果: 以下是元组无效的,因为元组是不 ...

  2. 导入本地Excel到DataSet中

    /// <summary> /// 导入本地Excel到DataSet中 /// </summary> /// <param name="strFileSour ...

  3. js-点击tab按钮,同一页面显示不同的内容

    效果: html: JS: css: .tabs-two{ .two{ display: inline-block; font-size:14px; height: 17px; font-weight ...

  4. 消息队列之--RocketMQ

    序言 资料 https://github.com/alibaba/RocketMQ http://rocketmq.apache.org/

  5. Vue CLI4.0版本正式发布了!一起来看看有哪些新的变化吧

    Vue CLI4.0版本正式发布 这个主要的版本更新主要关注底层工具的必要版本更新.更好的默认设置和其他长期维护所需的微调. 我们希望为大多数用户提供平稳的迁移体验. Vue CLI v4提供了对Ni ...

  6. BZOJ 4422 Cow Confinement (线段树、DP、扫描线、差分)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=4422 我真服了..这题我能调一天半,最后还是对拍拍出来的...脑子还是有病啊 题解: ...

  7. Vue中 v-bind和v-on 缩写

    v-bind 缩写 <!-- 完整语法 --> <a v-bind:href="url">...</a> <!-- 缩写 --> & ...

  8. spring session 加载的时候一些配置问题

    启动springboot时候的错误信息: An attempt was made to call the method org.springframework.boot.autoconfigure.s ...

  9. ssm的自动类型转换器

    1.jsp页面将String 转换成employee类型 <form action="testConversionServiceConverer" method=" ...

  10. 【C++进阶】getline

    在<istream>中的getline函数有两种重载形式: istream& getline (char* s, streamsize n );istream& getli ...