[BZOJ 4332] [JSOI2012]分零食(DP+FFT)

题面

同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U。如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=Ox^2+Sx+U\)

现在校长开始分糖果了,一共有M个糖果。有些小朋友可能得不到糖果,对于那些得不到糖果的小朋友来说,欢乐程度就是1。如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果。(即这一列得不到糖果的小朋友一定是最后的连续若干位)

所有分糖果的方案都是等概率的。现在问题是:期望情况下,所有小朋友的欢乐程度的乘积是多少?呆呆同学很快就有了一个思路,只要知道总的方案个数T和所有方案下欢乐程度乘积的总和S,就可以得到答案Ans=S/T。现在他已经求出来了T的答案,但是S怎么求呢?他就不知道了。你能告诉他么?

因为答案很大,你只需要告诉他S对P取模后的结果。

分析

题面osu好评

设\(dp[i][j]\)表示i个人里分j个零食得到的答案

那么$$dp[i][j]=\sum_{k=0}^{j} dp[i-1][j-k] f(j)$$

初始值\(dp[0][j]=1\)

暴力递推是\(O(nm^2)\)的,我们发现后面的式子是一个卷积的形式,即\(dp_i=dp_{i-1}*f\)

由于卷积满足结合律,\(dp_i=dp_0 * f^i=1*f^i=f^i\).但是我们要求的是\(\sum_{i=1}^n dp[n][m]\),单点求值用FFT可以做到\(O(m \log m \log n)\),求和的复杂度是\(O(nm \log m \log n)\).因此,我们考虑快速幂分治的思想,想办法把问题范围缩小一半。

令\(s_n=\sum_{i=1}^n dp_i\)

则$$s_n=s_{\frac{n}{2}}+\sum_{i=\frac{n}{2}+1}^n dp_i=s_{\frac{n}{2}}+\sum_{i=\frac{n}{2}+1}^n fi=s_{\frac{n}{2}}+\sum_{i=1}{n/2} f^{i+n/2}$$

\[=s_{\frac{n}{2}}+f^{\frac{n}{2}}*\sum_{i=1}^{\frac{n}{2}} f^{i}
\]

注意到\(f^{\frac{n}{2}}=dp_{\frac{n}{2}},\sum_{i=1}^{n/2} f^{i}=s_{\frac{n}{2}}\)那么

\[s_n=s_{\frac{n}{2}}+dp_{\frac{n}{2}}*s_{\frac{n}{2}}
\]

类似快速幂倍增一下即可,答案就是\(s[n][m]\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<complex>
#define maxn 300000
#include<cmath>
using namespace std;
typedef complex<double> com;
typedef long long ll;
const double pi=acos(-1.0); int n,m;
ll O,S,U;
ll mod;
void fft(com *x,int *rev,int n,int type){
for(int i=0;i<n;i++) if(i<rev[i]) swap(x[i],x[rev[i]]);
for(int len=1;len<n;len*=2){
int sz=len*2;
com wn1=com(cos(2*pi/sz),type*sin(2*pi/sz));
for(int l=0;l<n;l+=sz){
int r=l+len-1;
com wnk=com(1,0);
for(int i=l;i<=r;i++){
com tmp=x[i+len];
x[i+len]=x[i]-tmp*wnk;
x[i]=x[i]+tmp*wnk;
wnk*=wn1;
}
}
}
} struct poly{
int len;
ll arr[maxn+5];
inline int size(){
return len;
}
inline ll & operator [](int i){
return arr[i];
}
friend void operator += (poly &p,poly &q){
for(int i=0;i<=p.len;i++){
p.arr[i]=(p.arr[i]+q.arr[i])%mod;
}
}
void print(){
for(int i=0;i<=len;i++) printf("%d ",arr[i]);
printf("\n");
}
};
int rev[maxn+5];
com tmpa[maxn+5],tmpb[maxn+5],tmpc[maxn+5];
void mul(poly &a,poly &b,poly &c){ int tn=1,k=0;
while(tn<=a.len*2){
k++;
tn*=2;
}
for(int i=0;i<tn;i++){
rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
tmpa[i]=tmpb[i]=tmpc[i]=0;
}
for(int i=0;i<=a.len;i++){
tmpa[i]=a[i];
tmpb[i]=b[i];
}
fft(tmpa,rev,tn,1);
fft(tmpb,rev,tn,1);
for(int i=0;i<tn;i++) tmpc[i]=tmpa[i]*tmpb[i];
fft(tmpc,rev,tn,-1);
for(int i=0;i<=a.len;i++) c[i]=(ll)(tmpc[i].real()/tn+0.5)%mod;
} poly f,g,tmp,a;
inline void fast_pow(int k){
if(k==1){
f.len=g.len=m;
tmp.len=m;
for(int i=0;i<=m;i++) f[i]=g[i]=a[i];
return;
}
fast_pow(k>>1);
// f.print();
// g.print();
mul(f,g,tmp);
// tmp.print();
f+=tmp;
mul(g,g,g);
if(k&1){
mul(g,a,g);
f+=g;
}
} inline ll calc(ll x){
return O*x*x%mod+S*x%mod+U%mod;
}
int main(){
scanf("%d %lld",&m,&mod);
scanf("%d %lld %lld %lld",&n,&O,&S,&U);
for(int i=1;i<=m;i++) a[i]=calc(i)%mod;
//注意a[0]=0,而不是calc(0),因为分到0的快乐度是1,对答案无影响,不用累加
fast_pow(n);
printf("%lld\n",f[m]);
}

[BZOJ 4332] [JSOI2012]分零食(DP+FFT)的更多相关文章

  1. 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)

    4332: JSOI2012 分零食 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 119  Solved: 66 Description 这里是欢乐 ...

  2. BZOJ 4332: JSOI2012 分零食 FFT+分治

    好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...

  3. bzoj 4332: JSOI2012 分零食 快速傅立叶变换

    题目: Description 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\) 现 ...

  4. bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...

  5. bzoj 4332:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  6. 【bzoj4332】【JSOI2012】 分零食 生成函数 FFT

    我们构造$f(x)$的生成函数$G(x)$,那么显然$[x^k]G(x)=Ok^2+Sk+U$ 那么显然,答案即为$\sum_{i=1}^{n} [x^m]G^i(x)$ 我们构造答案的生成函数$F( ...

  7. bzoj4332;vijos1955:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  8. BZOJ4332 JSOI2012 分零食 【倍增 + NTT】

    题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...

  9. bzoj4332[JSOI2012]分零食

    一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存 ...

随机推荐

  1. Hibernate实体对象的生命周期(三种状态)

    瞬时状态(Transient) 通过new创建对象后,对象并没有立刻持久化,它并未与数据库中的数据有任何关联,此时Java对象的状态为瞬时状态. Session对于瞬时状态的Java对象是一无所知的, ...

  2. 《Spring源码深度解析》一

    Spring整体架构 1.1 Spring整体架构 1.1.1 Core Container: 模块:Core.Beans.Context和Expression Language Core:框架的基础 ...

  3. python 面向对象_2

    self的理解 通俗理解self就是实例对象,实例化的是什么,self就是什么 实例变量: 经过实例化才能使用的变量 class Person(): def __init__(self,id,name ...

  4. 兄弟连教育分享-SQL性能优化十条经验

    1.查询的模糊匹配 尽量避免在一个复杂查询里面使用 LIKE '%parm1%'——红色标识位置的百分号会导致相关列的索引无法使用,最好不要用. 兄弟连教育分享-SQL性能优化十条经验 解决办法: 其 ...

  5. Python连接MySQL之Python库pymysql

    连接数据库 pymysql连接数据库的方式和使用sqlite的方式基本相同: 使用connect创建连接对象 connect.cursor创建游标对象,SQL语句的执行基本都在游标上进行 cursor ...

  6. 【HDU6667】Roundgod and Milk Tea【贪心】

    题目大意:给你ai,bi,限制ai不能流向bi,求最大流 题解:贪心,对于第i个班级,考虑前i-1个班级匹配完剩余多少a,b,将这些ab对第i个班级进行贪心匹配 匹配完若第i个班级还有剩余的ab,考虑 ...

  7. HDU1254--推箱子(BFS+DFS)

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...

  8. 5 个优秀前端 UI 框架

    随着 Web 技术的不断发展,前端开发框架层出不穷,各有千秋,今天小编为大家奉上前端 UI 框架的开源项目,希望大家能够喜欢!如果大家有 UI 框架相关的开源项目,也可以托管到码云上,我们会及时给予推 ...

  9. leetcode-mid-Linked list- 200. Number of Islands¶

    mycode  57.92% class Solution(object): def numIslands(self, grid): """ :type grid: Li ...

  10. 使用C#分层查询多个表数据

    下面我来给大家叙述一下视野分层加载多张表数据: 首先创建一个StudentExtends类: 在DAL层studentDAL类写如下代码: 在BLL层写如下代码,引用DAL层的LoadStudentI ...