noi.ac NA535 【生成树】
因为太蠢一直写T1也没仔细想,赛后发现是个真小清新思维题,本质构造???
首先显然不会无解,这个随随便便证一下就有了
另外给的式子没啥意义,也就能说明颜色随机???害人不浅
然后就从\(1\)开始,钦点颜色为\(0\),然后顺着编号递增判断能不能同色入栈,不能则弹出栈顶元素,如果弹空了则意味着当前点和其他点都有颜色为\(1\)的边,于是这样跑就能得到解,时间复杂度\(\mathcal{O}(n\log n)\)(\(\log\)是因为用了map)
#include<bits/stdc++.h>
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
#define pb push_back
typedef long long ll;
using namespace std;
const int N=5e5+5;
void qread(int &xx){
xx=0;int ch=getchar();
while(ch<'0'||ch>'9'){
ch=getchar();
}
while(ch>='0'&&ch<='9'){
xx=xx*10+ch-'0';
ch=getchar();
}
}
void qread(ll &xx){
xx=0;int ch=getchar();
while(ch<'0'||ch>'9'){
ch=getchar();
}
while(ch>='0'&&ch<='9'){
xx=xx*10+ch-'0';
ch=getchar();
}
}
map<int,int>G[N];vector<pii>ans[2];stack<int>st;
int n,m,col;long long X,Y,Z,p[N];
int query(int u,int v){
if(G[u].count(v)){
return G[u][v];
}
return (1LL*(u<v?u:v)*X+1LL*(u>v?u:v)*Y)%Z>=p[u]+p[v];
}
void solve(){
st.push(1);
for(int i=2;i<=n;i++){
while(!st.empty()){
int u=st.top(),ec=query(u,i);
ans[ec].pb(mk(u,i));
if(col^ec){
st.pop();
}
else{
break;
}
}
if(st.empty()){
col^=1;st.push(1);
}
st.push(i);
}
}
int main(){
qread(n);qread(m);
for(int i=1,u,v,w;i<=m;i++){
qread(u);qread(v);qread(w);
G[u][v]=G[v][u]=w;
}
qread(X);qread(Y);qread(Z);
for(int i=1;i<=n;i++){
qread(p[i]);
}
solve();
for(auto pr:ans[col]){
printf("%d %d\n",pr.fi,pr.se);
}
return 0;
}
noi.ac NA535 【生成树】的更多相关文章
- noi.ac #535 生成树
题目链接:戳我 我们考虑按照编号依次加点,然后维护一个栈. 预设生成树的颜色为color. 对于当前点x,如果它和栈首的点连边颜色相同,那么他们的连边可以作为生成树上面的边,点i已经连接,直接brea ...
- NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)
题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
随机推荐
- C# Job System概述
C# 作业系统是如何工作 允许用户编写与Unity其余部分良好交互的多线程代码,并使编写正确的代码变得更加容易. 编写多线程代码可以提供高性能的好处,其中包括帧速率的显著提高.以及将Burst编译器与 ...
- LeetCode.1078-两词出现后的单词(Occurrences After Bigram)
这是小川的第392次更新,第422篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第254题(顺位题号是1078).给出单词first和单词second,以"fi ...
- 实现文件上传功能(FileUpload组件)
文件上传: 项目中经常用到文件上传. 自己实现文件上传,使用文件上传组件fileupload组件 1.指定表单类型为文件上传, enctype=”multipart/form-data” 2.提交方式 ...
- 人工智能01 刺激响应agent
刺激响应agent 不具有内部状态而仅对其所处环境的即刻刺激有所反应的机器称为刺激响应(SR)agent 感知和动作 一机器人可以感知出周围8个单元是否空缺.这些传感器输入用二进制变量s1,s2 ,s ...
- 笛卡尔树--牛客第四场(sequence)
思路: O(n)建一颗笛卡尔树,再O(n)dfs向上合并答案就行了. #define IOS ios_base::sync_with_stdio(0); cin.tie(0); #include &l ...
- # [爬虫Demo] pyquery+csv爬取猫眼电影top100
目录 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 代码君 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 https://maoyan.co ...
- CSP 最大的矩形(201312-3)
问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi.这n个矩形构成了一个直方图.例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3 ...
- python-redis缓存-pool
#连接池 import redis pool=redis.ConnectionPool(host='192.168.71.140', port=6379) r = redis.Redis(connec ...
- 关于echarts中南海诸岛的显示问题
1.china.js 文件中 echarts.registerMap('china', //名字要是'china',不能写成'中国' 2.echarts 配置中地图名称 mapName: ...
- 使用openresty实现按照流量百分比控制的灰度分流控制
安装好以后直接就可以配置实践了,openresty将lua都集成好了,nginx配置文件无需特殊声明引入lua file. 1.nginx.conf 添加两个灰度发布的环境 #grey 灰度环境地址 ...