noi.ac NA535 【生成树】
因为太蠢一直写T1也没仔细想,赛后发现是个真小清新思维题,本质构造???
首先显然不会无解,这个随随便便证一下就有了
另外给的式子没啥意义,也就能说明颜色随机???害人不浅
然后就从\(1\)开始,钦点颜色为\(0\),然后顺着编号递增判断能不能同色入栈,不能则弹出栈顶元素,如果弹空了则意味着当前点和其他点都有颜色为\(1\)的边,于是这样跑就能得到解,时间复杂度\(\mathcal{O}(n\log n)\)(\(\log\)是因为用了map)
#include<bits/stdc++.h>
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
#define pb push_back
typedef long long ll;
using namespace std;
const int N=5e5+5;
void qread(int &xx){
xx=0;int ch=getchar();
while(ch<'0'||ch>'9'){
ch=getchar();
}
while(ch>='0'&&ch<='9'){
xx=xx*10+ch-'0';
ch=getchar();
}
}
void qread(ll &xx){
xx=0;int ch=getchar();
while(ch<'0'||ch>'9'){
ch=getchar();
}
while(ch>='0'&&ch<='9'){
xx=xx*10+ch-'0';
ch=getchar();
}
}
map<int,int>G[N];vector<pii>ans[2];stack<int>st;
int n,m,col;long long X,Y,Z,p[N];
int query(int u,int v){
if(G[u].count(v)){
return G[u][v];
}
return (1LL*(u<v?u:v)*X+1LL*(u>v?u:v)*Y)%Z>=p[u]+p[v];
}
void solve(){
st.push(1);
for(int i=2;i<=n;i++){
while(!st.empty()){
int u=st.top(),ec=query(u,i);
ans[ec].pb(mk(u,i));
if(col^ec){
st.pop();
}
else{
break;
}
}
if(st.empty()){
col^=1;st.push(1);
}
st.push(i);
}
}
int main(){
qread(n);qread(m);
for(int i=1,u,v,w;i<=m;i++){
qread(u);qread(v);qread(w);
G[u][v]=G[v][u]=w;
}
qread(X);qread(Y);qread(Z);
for(int i=1;i<=n;i++){
qread(p[i]);
}
solve();
for(auto pr:ans[col]){
printf("%d %d\n",pr.fi,pr.se);
}
return 0;
}
noi.ac NA535 【生成树】的更多相关文章
- noi.ac #535 生成树
题目链接:戳我 我们考虑按照编号依次加点,然后维护一个栈. 预设生成树的颜色为color. 对于当前点x,如果它和栈首的点连边颜色相同,那么他们的连边可以作为生成树上面的边,点i已经连接,直接brea ...
- NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)
题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
随机推荐
- C# 实现opc ua服务器的远程连接(转)
原文转自:https://www.cnblogs.com/dathlin/p/7724834.html OPC UA简介 OPC是应用于工业通信的,在windows环境的下一种通讯技术,原有的通信技术 ...
- Misc题目
@freebuff教程https://www.freebuf.com/column/196815.html @巅峰极客wp https://www.anquanke.com/post/id/18914 ...
- TensorFlow实战第四课(tensorboard数据可视化)
tensorboard可视化工具 tensorboard是tensorflow的可视化工具,通过这个工具我们可以很清楚的看到整个神经网络的结构及框架. 通过之前展示的代码,我们进行修改从而展示其神经网 ...
- 【C/C++】什么是线程安全
<strong>线程安全</strong>就是多线程访问时,采用了加锁机制,当一个线程访问该类的某个数据时,进行保护,其他线程不能进行访问直到该线程读取完,其他线程才可使用.不 ...
- Zuul网关跨域问题
1.跨域就指着协议,域名,端口不一致,出于安全考虑,跨域的资源之间是无法交互的.简单说就是协议不通,域名不通,端口不同都会产生跨域问题 Access-Control-Allow-Origin是HTML ...
- Vim命令使用
终端输入vim命令(不区分大小写)进入Vim,起始默认进去是normal模式(即普通模式),使用:q可以退出Vim,使用i(insert)进入编辑模式,开始输入文字,使用Esc键又可以回到normal ...
- NOIP2017普及组比赛总结
期中考总结&NOIP2017总结 2017年11月11日,我第二次参加NOIP普及组复赛.上一年,我的得分是250分,只拿到了二等奖.我便把目标定为拿到一等奖,考到300分以上. 早上8点多, ...
- python_线程读写操作<一>
线程读写操作 import threading,random,queue q = queue.Queue() alist=[] def shengchan(): for i in range(10): ...
- jQuery俄罗斯方块游戏动画
在线演示 本地下载
- Android新版xUtils3工具类相关debug
首先出现问题是 build.gradle中的csayısıom.lidroid.xutils:xutils:2.6.13报错了,所以想到是版本的问题,github上搜了xutils发现有新版xutil ...