题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2004

看了很多大佬的博客才理解了这道题,菜到安详QAQ

在不考虑优化的情况下,先推$dp$式子,设$dp[i][j]$为最慢的公交车走到了第$i$站,$[i,i+p-1]$站的状态为$j$时的方案数。$i$到$i+p-1$的范围内有且仅有$k$辆车,则状态$j$应该为$p$长度的二进制串,其中有且仅有$k$个$1$(表示$k$辆车)并且第$1$位一定为$1$(第$1$位对应了当前的位置)。则初始态为$dp[0][111(k个1)…000(p-k个0)]$,结束态为$dp[n-k][111(k个1)…000(p-k个0)]$。判断状态$w$是否可以转移到状态$e$,则判断$w$的第$2$位到第$p+1$位($p+1$位补零)是否与$e$的第$1$位到$p$位只有一位不同,是则可以转移$dp[i][e]+=dp[i-1][w]$;

这时候考虑优化,$n<=1e9$就注定要矩阵快速幂加速,则先处理出所有状态之间的关系并构建矩阵$d[i][j]$,$d[i][j]$为$1$表示第一次第$i$个状态可以转移到第$j$个状态。我们要求的是第$n-k$次后初始态到结束态的方案数,根据矩阵乘法的定义$d[i][j]=\sum_{k=1}^{n}d[i][k]*d[k][j]$,则我们只要将矩阵连乘$(n-k)$次,d[结束态][初始态]就是我们所求的。而初始态和结束态实际上是一样的。

当n较小时可以状压dp

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = ;
int check(int x) {//判断x状态中1的个数
int sum = ;
while (x) {
sum++;
x -= (x&(-x));
}
return sum;
}
int dp[][ << ];
int main() {
int n, k, p;
while (scanf("%d%d%d", &n, &k, &p) != EOF) {
memset(dp, , sizeof(dp));
int End;
for (int i = ( << (p - )); i < ( << p); i++) {
if (i == ( << p) - - (( << (p - k)) - ))
End = i;
}
dp[][End] = ;
for (int i = ; i <= n - k; i++) {
for (int j = ( << (p - )); j < ( << p); j++) {
for (int w = ( << (p - )); w < ( << p); w++) {
if (check(j) == check(w) && check(j) == k) {
int q = (w - ( << (p - ))) << ;
int t = (q^j);
if (t == (t&(-t))) {
dp[i][j] = (dp[i][j] + dp[i - ][w]) % mod;
}
}
}
}
}
printf("%d\n", dp[n - k][End]);
}
}

本题正解:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = ;
int check(int x) {//判断x中1的个数
int sum = ;
while (x) {
sum++;
x -= (x&(-x));
}
return sum;
}
struct martix {
int tmp[][];
int num;
martix operator *(const martix &b)const {
martix ans;
ans.num = num;
for (int i = ; i <= num; i++) {
for (int j = ; j <= num; j++) {
ans.tmp[i][j] = ;
for (int k = ; k <= num; k++) {
ans.tmp[i][j] += tmp[i][k] * b.tmp[k][j];
ans.tmp[i][j] %= mod;
}
}
}
return ans;
}
};
martix qpow(martix a, int x) {
martix ans;
ans.num = a.num;
memset(ans.tmp, , sizeof(ans.tmp));
for (int i = ; i <= ans.num; i++)
ans.tmp[i][i] = ;
while (x) {
if (x & )
ans = ans * a;
a = a * a;
x /= ;
}
return ans;
}
int statu[ << ];
int main() {
int n, k, p;
while (cin >> n >> k >> p) {
martix a;
int len = , End;
for (int i = ( << (p - )); i < ( << p); i++) {
if (check(i) == k) {
statu[++len] = i;
if (i == ( << p) - - (( << (p - k)) - ))
End = len;
}
}
a.num = len;
memset(a.tmp, , sizeof(a.tmp));
for (int i = ; i <= len; i++) {
for (int j = ; j <= len; j++) {
int q = (statu[j] - ( << (p - ))) << ;
int t = (q^statu[i]);
if (t == (t&(-t)))
a.tmp[i][j] = ;
}
}
a = qpow(a, n - k);
printf("%d\n", a.tmp[End][End]);
}
}

[Bzoj2004][Hnoi2010]Bus 公交线路(状压dp&&矩阵加速)的更多相关文章

  1. BZOJ2004:[HNOI2010]Bus 公交线路(状压DP,矩阵乘法)

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定 ...

  2. 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法

    题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...

  3. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  4. 【BZOJ2004】[Hnoi2010]Bus 公交线路 状压+矩阵乘法

    [BZOJ2004][Hnoi2010]Bus 公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1 ...

  5. 『公交线路 状压dp 矩阵乘法加速』

    公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的 ...

  6. BZOJ 2004 公交线路(状压DP+矩阵快速幂)

    注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...

  7. BZOJ2004: [Hnoi2010]Bus 公交线路

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2004 状压dp+矩阵乘法. f[i][s]表示从第i位至前面的i-k位,第i位必须取的状态. ...

  8. bzoj2004 [Hnoi2010]Bus 公交线路 矩阵快速幂+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2004 题解 如果 \(N\) 没有那么大,考虑把每一位分配给每一辆车. 假设已经分配到了第 \ ...

  9. HDU 5564 Clarke and digits 状压dp+矩阵加速

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5564 题意: 求长度在[L,R]范围,并且能整除7的整数的总数. 题解: 考虑最原始的想法: dp[ ...

随机推荐

  1. WebStorm / IDEA最新激活码2019----100%随时可用

    亲测日期:2019.12.24 网址里面有 lookdiv.com 里面的钥匙就是lookdiv.com 或者直接点击备用码  http://lookdiv.com/spare.html 进入可能会比 ...

  2. C++ GUI Qt4学习笔记03

    C++ GUI Qt4学习笔记03   qtc++spreadsheet文档工具resources 本章介绍创建Spreadsheet应用程序的主窗口 1.子类化QMainWindow 通过子类化QM ...

  3. java:类集框架conllection接口list,set

    类集中提供了以下几种接口: 1.单值操作接口:conllection,List,Set list和set是conllection接口的子接口 2.一对值的操作接口:Map 3.排序的操作接口:Sort ...

  4. vue多层传递$attrs

    今天在使用$attrs的时候遇到一个问题: 父组件: <PanelContainer name="正向舆情"> <PositiveOpinion opinion= ...

  5. mysql OR运算符 语法

    mysql OR运算符 语法 作用:在 WHERE 子语句中把两个或多个条件结合起来. 语法:SELECT * FROM 表名 WHERE 字段1 运算符 值 OR 字段2 运算符 值 说明:如果第一 ...

  6. 电脑新安装JDK版本并运行使用该JDK版本问题

    情景:电脑上已正常安装一个jdk版本,如:1.7.0_71,因考虑到一些情况,现需要使用版本为1.7.0_80(1.8),故需新安装JDK,并使服务可以运行使用新安装的JDK版本. 网络找寻方法: ( ...

  7. Understanding the Module Pattern in JavaScript

    Understanding the Module Pattern in JavaScript Of all the design patterns you are likely to encounte ...

  8. AMD - Learning JavaScript Design Patterns [Book] - O'Reilly

    AMD - Learning JavaScript Design Patterns [Book] - O'Reilly The overall goal for the Asynchronous Mo ...

  9. HDU6715 算术(莫比乌斯反演)

    HDU6715 算术 莫比乌斯反演的变形. 对 \(\mu(lcm(i,j))\) 变换,易得 \(\mu(lcm(i,j)) = \mu(i)\cdot\mu(j)\cdot \mu(gcd(i,j ...

  10. loj#6487 基础 FFT 练习题

    分析 仔细观察a[i],b[i]的数据范围 于是我们转为枚举所有a[i],b[i]的值 然后暴力即可 代码 #include<bits/stdc++.h> using namespace ...