题目


分析

考虑区间修改比较难操作,将数组差分一下,转化成两次单点修改。

这样查询前缀的异或值就是该位置的异或值,线性基可以用线段树维护,

那么取出 \((l,r]\) 所在的线性基,再将 \(a[l]\) 扔入线性基查询最大异或值即可

因为如果要取出 \(a_x\) 实则就是取出 \(a_l\) xor \(b_{l+1}\) xor \(\dots\) xor \(b_x\)。

所以区间异或有时转化成差分加单点异或,维护区间线性基可以这样做。


代码

#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=50011;
int a[N],n,m;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
struct Vector_Space{
int re[30],now;
inline void BUILD(){memset(re,0,sizeof(re));}
inline void Insert(int x){
for (rr int i=29;~i;--i)
if ((x>>i)&1){
if (re[i]) x^=re[i];
else {re[i]=x; return;}
}
}
inline signed query(int x){
for (rr int i=29;~i;--i)
if ((x^re[i])>x) x^=re[i];
return x;
}
}w[N<<2];
inline Vector_Space Merge(Vector_Space A,Vector_Space B){
for (rr int i=29;~i;--i)
if (B.re[i]) A.Insert(B.re[i]);
A.now^=B.now;
return A;
}
inline void build(int k,int l,int r){
if (l==r) {w[k].Insert(w[k].now^=a[l]); return;}
rr int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
w[k]=Merge(w[k<<1],w[k<<1|1]);
}
inline void update(int k,int l,int r,int x,int y){
if (l==r) {w[k].BUILD(),w[k].Insert(w[k].now^=y); return;}
rr int mid=(l+r)>>1;
if (x<=mid) update(k<<1,l,mid,x,y);
else update(k<<1|1,mid+1,r,x,y);
w[k]=Merge(w[k<<1],w[k<<1|1]);
}
inline signed query(int k,int l,int r,int x){
if (l==r) return w[k].now;
rr int mid=(l+r)>>1;
if (x<=mid) return query(k<<1,l,mid,x);
else return query(k<<1|1,mid+1,r,x)^w[k<<1].now;//前缀xor
}
inline Vector_Space Query(int k,int l,int r,int x,int y){
if (l==x&&r==y) return w[k];
rr int mid=(l+r)>>1;
if (y<=mid) return Query(k<<1,l,mid,x,y);
else if (x>mid) return Query(k<<1|1,mid+1,r,x,y);
else return Merge(Query(k<<1,l,mid,x,mid),Query(k<<1|1,mid+1,r,mid+1,y));
}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=n;++i) a[i]=iut();
for (rr int i=n;i>1;--i) a[i]^=a[i-1];
build(1,1,n);
for (rr int i=1;i<=m;++i){
rr int opt=iut(),l=iut(),r=iut(),x=iut();
if (opt==1){
update(1,1,n,l,x);
if (r<n) update(1,1,n,r+1,x);
}else{
rr int Al=query(1,1,n,l);
if (l==r) {print(x>(x^Al)?x:(x^Al)),putchar(10); continue;}
rr Vector_Space t=Query(1,1,n,l+1,r);
t.Insert(Al),print(t.query(x)),putchar(10);
}
}
return 0;
}

#线性基,差分,线段树#洛谷 5607 [Ynoi2013] 无力回天 NOI2017的更多相关文章

  1. CodeForces - 587E[线段树+线性基+差分] ->(线段树维护区间合并线性基)

    题意:给你一个数组,有两种操作,一种区间xor一个值,一个是查询区间xor的结果的种类数 做法一:对于一个给定的区间,我们可以通过求解线性基的方式求出结果的种类数,而现在只不过将其放在线树上维护区间线 ...

  2. 洛谷 P5607 [Ynoi2013] 无力回天 NOI2017

    人生第一道Ynoi,开心 Description https://www.luogu.com.cn/problem/P5607 Solution 拿到这个题,看了一下,发现询问要求最大异或和,怎么办? ...

  3. 【Luogu3733】[HAOI2017]八纵八横(线性基,线段树分治)

    [Luogu3733][HAOI2017]八纵八横(线性基,线段树分治) 题面 洛谷 题解 看到求异或最大值显然就是线性基了,所以只需要把所有环给找出来丢进线性基里就行了. 然后线性基不资磁撤销?线段 ...

  4. bzoj 4184: shallot【线性基+时间线段树】

    学到了线段树新姿势! 先离线读入,根据时间建一棵线段树,每个节点上开一个vector存这个区间内存在的数(使用map来记录每个数出现的一段时间),然后在线段树上dfs,到叶子节点就计算答案. 注意!! ...

  5. 线段树 洛谷P3932 浮游大陆的68号岛

    P3932 浮游大陆的68号岛 题目描述 妖精仓库里生活着黄金妖精们,她们过着快乐,却随时准备着迎接死亡的生活. 换用更高尚的说法,是随时准备着为这个无药可救的世界献身. 然而孩子们的生活却总是无忧无 ...

  6. [线段树]洛谷P5278 算术天才⑨与等差数列

    题目描述 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k ...

  7. 区间连续长度的线段树——洛谷P2894 [USACO08FEB]酒店Hotel

    https://www.luogu.org/problem/P2894 #include<cstdio> #include<iostream> using namespace ...

  8. 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...

  9. [Luogu5327][ZJOI2019]语言(树上差分+线段树合并)

    首先可以想到对每个点统计出所有经过它的链的并所包含的点数,然后可以直接得到答案.根据实现不同有下面几种方法.三个log:假如对每个点都存下经过它的链并S[x],那么每新加一条路径进来的时候,相当于在路 ...

  10. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

随机推荐

  1. maven引入本地jar不能打入部署包的问题解决

    引入的三方依赖 jar 包, scope 为 system 的包 maven 默认是不打包进去的,需要加这个配置 在pom.xml文件中找到spring-boot-maven-plugin插件,添加如 ...

  2. tox运行报C901错误解决办法

    # 报C901表示该函数太复杂! 解决办法 在函数上添加如下注释即可 # flake8: noqa: C901

  3. JVM-对象实例化

    JVM-对象实例化 1.创建对象的方式 new:最常见的方式.Xxx的静态方法,XxxBuilder/XxxFactory的静态方法 Class的newInstance方法:反射的方式,只能调用空参的 ...

  4. 【LeetCode回溯算法#03】电话号码的字母组合(数字映射字母)

    电话号码的字母组合 力扣题目链接(opens new window) 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合. 给出数字到字母的映射如下(与电话按键相同).注意 1 不对应任 ...

  5. 2024-02-28:用go语言,有一个由x轴和y轴组成的坐标系, “y下“和“y上“表示一条无限延伸的道路,“y下“表示这个道路的下限,“y上“表示这个道路的上限, 给定一批长方形,每一个长方形有(

    2024-02-28:用go语言,有一个由x轴和y轴组成的坐标系, "y下"和"y上"表示一条无限延伸的道路,"y下"表示这个道路的下限,& ...

  6. 【Azure App Service】当App Service中使用系统标识无法获取Access Token时

    问题描述 App Serive上的应用配置了系统标识(System Identity),通过系统标识获取到访问Key Vault资源的Access Token.但这次确遇见了无法获取到正常的Acces ...

  7. 【Azure 应用服务】VS2019发布应用到正在运行的App Service时失败问题的解决

    问题描述 在VS 2019中配置号App Service的Publish Profile后,发布应用出现错误.根据VS 2019中的输出消息可知有文件正在运行中,无法被替换,所以发布失败. 问题解决 ...

  8. 【Azure Developer】Python 获取 Azure 中订阅(subscription)信息,包含ID, Name等

    问题描述 在Azure AD中注册一个Applicaiton后,对其进行授权,能够查看所有订阅的ReadOnly权限,然后,是否可以同通过Python代码,在完成Authorization后(使用Cl ...

  9. Android---Android Studio项目目录结构分析.

    1. .gradle 和.idea 这两个目录下放置的都是 Android Studio 自动生成的一些文件,我们无须关心,也不要去手 动编辑. 2. app 项目中的代码.资源等内容几乎都是放置在这 ...

  10. vue3在typescript下对props类型判断

    使用vue3.0 对 props 进行复杂类型验证的时候,可以直接用 PropType 进行强制转换: callback: Function as PropType<()=>void> ...