Solution -「洛谷 P3600」随机数生成器
Desciption
Link.
给定一个值域在 \([1,x]\) 的长度为 \(n\) 的序列(由随机数构成),求给定一组区间中的最小值的最大值的期望。
Solution
记:
\]
因为我们最后取的是 \(\max\),不能直接用全概率公式,转化一下:
\]
这意味着每一个被询问区间中的最小值都需 \(<i\)。也就是说,每一个区间至少需要一个 \(<i\) 的数。
这对于每一个区间来说概率为 \(\frac{i-1}{x}\)。又因为区间可能出现相交,所以我们考虑用点去被包含于区间。
当然,一个区间包含另一个区间,这个区间肯定是没有用的。然后把区间按左右端点分别为第一、第二关键字排序。
枚举 \(w\),设 \(f_{i}\) 表示区间右端点在 \(i\) 之前的所有区间满足条件的概率。
\]
#include <cstdio>
using i64 = long long;
const int MOD = 666623333;
const int MAXN = 2e3 + 5;
int n, x, q, ar[MAXN];
i64 f[MAXN][2], ff[MAXN][2];
void imax ( int& a, const int b ) { a = a < b ? b : a; }
int add ( const int a, const int b, const int p = MOD ) { return a + b < p ? a + b : ( a + b ) % p; }
int sub ( const int a, const int b, const int p = MOD ) { return a - b < 0 ? a - b + p : a - b; }
int mul ( const i64 a, const i64 b, const int p = MOD ) { return a * b % p; }
int cpow ( int bas, int idx = MOD - 2 ) {
int res = 1;
while ( idx ) {
if ( idx & 1 ) res = mul ( res, bas );
bas = mul ( bas, bas ), idx >>= 1;
}
return res % MOD;
}
int main () {
scanf ( "%d%d%d", &n, &x, &q );
for ( int i = 1, tmpl, tmpr; i <= q; ++ i ) scanf ( "%d%d", &tmpl, &tmpr ), imax ( ar[tmpr + 1], tmpl );
for ( int i = 1; i <= n + 1; ++ i ) imax ( ar[i], ar[i - 1] );
i64 ix = cpow ( x ), ans = 0;
for ( int i = 1; i <= x; ++ i ) {
i64 p = mul ( i - 1, ix ) % MOD, ip = cpow ( 1 - p ), s;
ff[0][0] = ff[0][1] = 1;
for ( int j = 1; j <= n; ++ j ) ff[j][0] = mul ( ff[j - 1][0], 1 - p ) % MOD, ff[j][1] = mul ( ff[j - 1][1], ip ) % MOD;
f[0][0] = 0, f[0][1] = 1;
for ( int j = 1; j <= n; ++ j ) {
f[j][0] = mul ( mul ( p, sub ( f[j - 1][1], ar[j] ? f[ar[j] - 1][1] : 0 ) ) % MOD, ff[j - 1][0] ) % MOD;
f[j][1] = add ( mul ( f[j][0], ff[j][1] ) % MOD, f[j - 1][1] ) % MOD;
}
s = 0;
for ( int j = ar[n + 1]; j <= n; ++ j ) s = add ( s, mul ( f[j][0], ff[n - j][0] ) % MOD ) % MOD;
ans = sub ( add ( ans, 1 ) % MOD, s );
}
printf ( "%lld\n", ans % MOD );
return 0;
}
Solution -「洛谷 P3600」随机数生成器的更多相关文章
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Note/Solution -「洛谷 P5158」「模板」多项式快速插值
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...
- 【洛谷P3600】 随机数生成器
https://www.luogu.org/problem/show?pid=3600#sub (题目链接) 题意 一个$n$个数的序列,里面每个数值域为$[1,X]$.给$q$个区间,每个区间的权值 ...
- Solution -「洛谷 P4198」楼房重建
\(\mathcal{Description}\) Link. 给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- Solution -「洛谷 P6021」洪水
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...
- Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集. \(n,m\le10^5 ...
- Solution -「洛谷 P5236」「模板」静态仙人掌
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路. \(n,q\le10^4\),\(m\ ...
- Solution -「洛谷 P4320」道路相遇
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...
- Solution -「洛谷 P5827」边双连通图计数
\(\mathcal{Description}\) link. 求包含 \(n\) 个点的边双连通图的个数. \(n\le10^5\). \(\mathcal{Solution}\) ...
随机推荐
- 淘宝召回模型MGDSPR-学习笔记
一 简介 本文是论文Embedding-based Product Retrieval in Taobao Search的学习笔记 1 整体概览 电商无处不在,从大规模语料库里面检索出兼顾相关性和用户 ...
- 基于uniapp+vite4+vue3搭建跨端项目|uni-app+uview-plus模板
最近得空学习了下uniapp结合vue3搭建跨端项目.之前也有使用uniapp开发过几款聊天/仿抖音/后台管理等项目,但都是基于vue2开发.随着vite.js破局出圈,越来越多的项目偏向于vue3开 ...
- .NET Core(C#)使用Titanium.Web.Proxy实现Http(s)代理服务器监控HTTP请求
关于Titanium.Web.Proxy详细信息可以去这里仔细看看,这里只记录简单用法 安装引用Titanium.Web.Proxy NuGet直接获取Titanium.Web.Proxy 使用 配置 ...
- 生成式预训练Transformer在机器翻译中的应用与挑战
目录 1. 引言 2. 技术原理及概念 3. 实现步骤与流程 4. 应用示例与代码实现讲解 5. 优化与改进 6. 结论与展望 机器翻译是人工智能领域的重要应用之一,而生成式预训练Transforme ...
- go使用 github.com/influxdata/influxdb/client/v2 写数据到 influxdb
转载请注明出处: 接入示例 使用 github.com/influxdata/influxdb/client/v2 依赖包向 InfluxDB 写入数据的示例代码: package main impo ...
- 数仓性能调优:大宽表关联MERGE性能优化
摘要:本文主要为大家讲解在数仓性能调优过程中,关于大宽表关联MERGE性能优化过程. 本文分享自华为云社区<GaussDB(DWS)性能调优:大宽表关联MERGE性能优化>,作者:譡里个檔 ...
- 每日一题 力扣 1090 https://leetcode.cn/problems/largest-values-from-labels/
每日一题 力扣 1090 https://leetcode.cn/problems/largest-values-from-labels/ 先对这道题目进行排序,贪心一下,要求分数最高的放在前面,而标 ...
- GO web学习(二)
跟着b站https://space.bilibili.com/361469957 杨旭老师学习做的笔记 Response响应 ResponseWriter 包括Writer,WriterHeader, ...
- 【Redis】八股文(一)
什么是Redis 基于key-value存储结构的NoSQL数据库 提供了String, Map, Set, ZSet, List等多种数据类型 功能丰富:支持发布订阅模式,能够为数据设置过期时间,能 ...
- linux内核编译体验篇(一)
文章目录 一. 准备环境 二. 获取内核源码 三. 交叉编译工具链的配置 1. 博友们常用安装方法链接 2. 公司常用的交叉工具链使用方法 四. 内核解压以及如何打补丁 五. 内核基本配置 1. 编译 ...