Desciption

Link.

给定一个值域在 \([1,x]\) 的长度为 \(n\) 的序列(由随机数构成),求给定一组区间中的最小值的最大值的期望。

Solution

记:

\[w=\max\{\min\{a_{l_{j}},a_{l_{j}+1},\cdots,a_{r_{j}}\}|j\in[1,q]\}
\]

因为我们最后取的是 \(\max\),不能直接用全概率公式,转化一下:

\[E(w)=\sum_{i=0}^{\infty}P(w\ge i)=\sum_{i=0}^{\infty}1-P(w<i)
\]

这意味着每一个被询问区间中的最小值都需 \(<i\)。也就是说,每一个区间至少需要一个 \(<i\) 的数。

这对于每一个区间来说概率为 \(\frac{i-1}{x}\)。又因为区间可能出现相交,所以我们考虑用点去被包含于区间。

当然,一个区间包含另一个区间,这个区间肯定是没有用的。然后把区间按左右端点分别为第一、第二关键字排序。

枚举 \(w\),设 \(f_{i}\) 表示区间右端点在 \(i\) 之前的所有区间满足条件的概率。

\[f_{i}=\frac{w-1}{x}\times\sum_{j=0}^{i}f_{j}\times(1-\frac{w-1}{x})^{i-j-1}
\]
#include <cstdio>

using i64 = long long;

const int MOD = 666623333;
const int MAXN = 2e3 + 5; int n, x, q, ar[MAXN];
i64 f[MAXN][2], ff[MAXN][2]; void imax ( int& a, const int b ) { a = a < b ? b : a; }
int add ( const int a, const int b, const int p = MOD ) { return a + b < p ? a + b : ( a + b ) % p; }
int sub ( const int a, const int b, const int p = MOD ) { return a - b < 0 ? a - b + p : a - b; }
int mul ( const i64 a, const i64 b, const int p = MOD ) { return a * b % p; }
int cpow ( int bas, int idx = MOD - 2 ) {
int res = 1;
while ( idx ) {
if ( idx & 1 ) res = mul ( res, bas );
bas = mul ( bas, bas ), idx >>= 1;
}
return res % MOD;
} int main () {
scanf ( "%d%d%d", &n, &x, &q );
for ( int i = 1, tmpl, tmpr; i <= q; ++ i ) scanf ( "%d%d", &tmpl, &tmpr ), imax ( ar[tmpr + 1], tmpl );
for ( int i = 1; i <= n + 1; ++ i ) imax ( ar[i], ar[i - 1] );
i64 ix = cpow ( x ), ans = 0;
for ( int i = 1; i <= x; ++ i ) {
i64 p = mul ( i - 1, ix ) % MOD, ip = cpow ( 1 - p ), s;
ff[0][0] = ff[0][1] = 1;
for ( int j = 1; j <= n; ++ j ) ff[j][0] = mul ( ff[j - 1][0], 1 - p ) % MOD, ff[j][1] = mul ( ff[j - 1][1], ip ) % MOD;
f[0][0] = 0, f[0][1] = 1;
for ( int j = 1; j <= n; ++ j ) {
f[j][0] = mul ( mul ( p, sub ( f[j - 1][1], ar[j] ? f[ar[j] - 1][1] : 0 ) ) % MOD, ff[j - 1][0] ) % MOD;
f[j][1] = add ( mul ( f[j][0], ff[j][1] ) % MOD, f[j - 1][1] ) % MOD;
}
s = 0;
for ( int j = ar[n + 1]; j <= n; ++ j ) s = add ( s, mul ( f[j][0], ff[n - j][0] ) % MOD ) % MOD;
ans = sub ( add ( ans, 1 ) % MOD, s );
}
printf ( "%lld\n", ans % MOD );
return 0;
}

Solution -「洛谷 P3600」随机数生成器的更多相关文章

  1. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  2. Note/Solution -「洛谷 P5158」「模板」多项式快速插值

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...

  3. 【洛谷P3600】 随机数生成器

    https://www.luogu.org/problem/show?pid=3600#sub (题目链接) 题意 一个$n$个数的序列,里面每个数值域为$[1,X]$.给$q$个区间,每个区间的权值 ...

  4. Solution -「洛谷 P4198」楼房重建

    \(\mathcal{Description}\)   Link.   给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...

  5. Solution -「洛谷 P6577」「模板」二分图最大权完美匹配

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...

  6. Solution -「洛谷 P6021」洪水

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...

  7. Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集.   \(n,m\le10^5 ...

  8. Solution -「洛谷 P5236」「模板」静态仙人掌

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路.   \(n,q\le10^4\),\(m\ ...

  9. Solution -「洛谷 P4320」道路相遇

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...

  10. Solution -「洛谷 P5827」边双连通图计数

    \(\mathcal{Description}\)   link.   求包含 \(n\) 个点的边双连通图的个数.   \(n\le10^5\). \(\mathcal{Solution}\)    ...

随机推荐

  1. 深度解读 Linux 内核级通用内存池 —— kmalloc 体系

    本文是笔者 slab 系列的最后一篇文章,为了方便大家快速检索,先将相关的文章列举出来: <细节拉满,80 张图带你一步一步推演 slab 内存池的设计与实现> <从内核源码看 sl ...

  2. 【了解LLM】—— LLM&& SD 基本概念

    本文地址:https://www.cnblogs.com/wanger-sjtu/p/17417312.html Causual LM 这里以llama模型为例,通常在执行用户输入之前会有一个[[文章 ...

  3. 【LeetCode摩尔投票】有趣的简单题:数组中出现次数超过一半的数字

    数组中出现次数超过一半的数字 https://leetcode.cn/problems/shu-zu-zhong-chu-xian-ci-shu-chao-guo-yi-ban-de-shu-zi-l ...

  4. Linux 可执行文件瘦身指令 strip 使用示例

    以下内容为本人的学习笔记,如需要转载,请声明原文链接微信公众号「ENG八戒」https://mp.weixin.qq.com/s/lJ8vj-FszEoplMVcmT0I0w 在 Linux 系统下开 ...

  5. [随笔]记一此更新win10后mysql服务消失的问题

    十几天前系统自动更新 没在意 几天前用php连mysql的时候 报错 Fatal error: Uncaught PDOException: SQLSTATE[HY000] [2002] 由于目标计算 ...

  6. 基于JavaFX的扫雷游戏实现(三)——交互逻辑

      相信阅读过上期文章,动手能力强的朋友们已经自己跑出来界面了.所以这期我要讲的是交互部分,也就是对于鼠标点击事件的响应,包括计时计数对点击事件以及一些状态量的影响.   回忆下第一期介绍的扫雷规则和 ...

  7. 配置http协议访问Harbor镜像仓库

    解决http: server gave HTTP response to HTTPS client问题,此问题在上传与下载时均可能出现. 由于docker镜像拉取与推送服务使用的是https协议,但是 ...

  8. 【小小demo】SpringBoot+Layui登录

    easy-login 基于layui 注册.登录简单实现,并他通过拦截器拦截未登录请求. 项目地址文章末尾 登录拦截器 SystemInterceptor preHandle在 Controller ...

  9. Flask结合gunicorn和nginx反向代理的生产环境部署及踩坑记录

    前言 之前自己写的flask使用gunicorn上线生产环境没有什么问题,但是最近搭建了一个现成的flask项目,当使用python直接运行时不会有问题,而使用gunicorn时则会出现一些问题. 部 ...

  10. 论文日记四:Transformer(论文解读+NLP、CV项目实战)

    导读 重磅模型transformer,在2017年发布,但就今天来说产生的影响在各个领域包括NLP.CV这些都是巨大的! Paper<Attention Is All You Need>, ...