Pytorch语法——torch.autograd.grad
The torch.autograd.grad function is a part of PyTorch's automatic differentiation package and is used to compute the gradients of given outputs with respect to given inputs. This function is useful when you need to compute gradients explicitly, rather than accumulating them in the .grad attribute of the input tensors.
Parameters:
- outputs: A sequence of tensors representing the outputs of the differentiated function.
- inputs: A sequence of tensors for which gradients will be calculated.
- grad_outputs: The "vector" in the vector-Jacobian product, usually gradients with respect to each output. Default is None.
- retain_graph: If set to False, the computation graph will be freed. Default value depends on the
create_graphparameter. - create_graph: If set to True, the graph of the derivative will be constructed, allowing higher-order derivative products. Default is False.
- allow_unused: If set to False, specifying unused inputs when computing outputs will raise an error. Default is False.
- is_grads_batched: If set to True, the first dimension of each tensor in grad_outputs will be interpreted as the batch dimension. Default is False.
Return type:
A tuple containing the gradients with respect to each input tensor.
Example:
Consider a simple example of computing the gradient of a function y = x^2 with respect to x. Here, x is the input and y is the output.
import torch
# Define the input tensor and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True)
# Define the function y = x^2
y = x ** 2
# Compute the gradient of y with respect to x
grads = torch.autograd.grad(outputs=y, inputs=x)
print(grads) # Output: (tensor(4.0),)
In this example, we first define the input tensor x with a value of 2.0 and enable gradient tracking by setting requires_grad=True. Then, we define the function y = x^2. Next, we compute the gradient of y with respect to x using torch.autograd.grad(outputs=y, inputs=x). The result is a tuple containing the gradient (4.0 in this case), which is the derivative of x^2 with respect to x evaluated at x=2.
The grad_outputs parameter in the torch.autograd.grad function represents the "vector" in the vector-Jacobian product. It is a sequence of tensors containing the gradients with respect to each output. The grad_outputs parameter is used when you want to compute a specific vector-Jacobian product, instead of the full Jacobian matrix.
When the gradient is computed using torch.autograd.grad, PyTorch computes the dot product of the Jacobian matrix (the matrix of partial derivatives) and the provided grad_outputs vector. If grad_outputs is not provided (i.e., set to None), PyTorch assumes it to be a vector of ones with the same shape as the output tensor.
Here's an example to help illustrate the concept:
import torch
# Define input tensors and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)
# Define the output function: z = x^2 + y^2
z = x ** 2 + y ** 2
# Compute the gradients of z with respect to x and y using different grad_outputs values
# Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=z, inputs=(x, y))
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor(4.0), tensor(6.0))
# Case 2: Custom grad_outputs (scalar value)
grad_outputs_scalar = torch.tensor(2.0)
grads2 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_scalar)
print("Case 2 - Custom grad_outputs (scalar):", grads2) # Output: (tensor(8.0), tensor(12.0))
# Case 3: Custom grad_outputs (tensor value)
grad_outputs_tensor = torch.tensor(3.0)
grads3 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_tensor)
print("Case 3 - Custom grad_outputs (tensor):", grads3) # Output: (tensor(12.0), tensor(18.0))
In this example, we define two input tensors x and y with values 2.0 and 3.0 respectively, and enable gradient tracking by setting requires_grad=True. Then, we define the output function z = x^2 + y^2. We compute the gradients of z with respect to x and y using three different values for grad_outputs.
- Case 1 - Default
grad_outputs: The gradients are (4.0, 6.0), which correspond to the partial derivatives of z with respect to x and y (2x and 2y) evaluated at x=2 and y=3. - Case 2 - Custom
grad_outputs(scalar): We provide a scalar value of 2.0 asgrad_outputs. The gradients are (8.0, 12.0), which are the original gradients (4.0, 6.0) multiplied by the scalar value 2. - Case 3 - Custom
grad_outputs(tensor): We provide a tensor value of 3.0 asgrad_outputs. The gradients are (12.0, 18.0), which are the original gradients (4.0, 6.0) multiplied by the tensor value 3.
As you can see from the examples, providing different values for grad_outputs affects the resulting gradients, as it represents the vector in the vector-Jacobian product. This parameter can be useful when you want to weight the gradients differently, or when you need to compute a specific vector-Jacobian product.
Here's another example with a multi-output function to further illustrate the concept:
import torch
# Define input tensor and enable gradient tracking
x = torch.tensor([2.0, 3.0], requires_grad=True)
# Define the multi-output function: y = [x0^2, x1^2]
y = x ** 2
# Compute the gradients of y with respect to x using different grad_outputs values
# Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=y, inputs=x)
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor([4., 6.]),)
# Case 2: Custom grad_outputs (tensor)
grad_outputs_tensor = torch.tensor([1.0, 2.0])
grads2 = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=grad_outputs_tensor)
print("Case 2 - Custom grad_outputs (tensor):", grads2) # Output: (tensor([ 4., 12.]),)
In this example, we define an input tensor x with two elements and enable gradient tracking. We then define a multi-output function y = [x0^2, x1^2]. We compute the gradients of y with respect to x using different values for grad_outputs.
- Case 1 - Default
grad_outputs: The gradients are (4.0, 6.0), which correspond to the partial derivatives of y with respect to x (2x0 and 2x1) evaluated at x0=2 and x1=3. - Case 2 - Custom
grad_outputs(tensor): We provide a tensor with values[1.0, 2.0]asgrad_outputs. The gradients are (4.0, 12.0), which are the original gradients (4.0, 6.0) multiplied element-wise by thegrad_outputstensor.
In the second case, the gradients are computed as the product of the Jacobian matrix and the provided grad_outputs tensor. This allows us to compute specific vector-Jacobian products or weight the gradients differently for each output.
Pytorch语法——torch.autograd.grad的更多相关文章
- Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph ...
- DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TORCH.AUTOGRAD
torch.autograd 是PyTorch的自动微分引擎,用以推动神经网络训练.在本节,你将会对autograd如何帮助神经网络训练的概念有所理解. 背景 神经网络(NNs)是在输入数据上执行的嵌 ...
- PyTorch 介绍 | AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD
训练神经网络时,最常用的算法就是反向传播.在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整. 为了计算这些梯度,PyTorch内置了名为 torch.autograd 的微分引擎. ...
- PyTorch教程之Autograd
在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Varia ...
- PyTorch Tutorials 2 AUTOGRAD: AUTOMATIC DIFFERENTIATION
%matplotlib inline Autograd: 自动求导机制 PyTorch 中所有神经网络的核心是 autograd 包. 我们先简单介绍一下这个包,然后训练第一个简单的神经网络. aut ...
- [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...
- Windows中安装Pytorch和Torch
近年来,深度学习框架如雨后春笋般的涌现出来,如TensorFlow.caffe.caffe2.PyTorch.Keras.Theano.Torch等,对于从事计算机视觉/机器学习/图像处理方面的研究者 ...
- Pytorch:module 'torch' has no attribute 'bool'
Pytorch:module 'torch' has no attribute 'bool' 这个应该是有些版本的Pytorch会遇到这个问题,我用0.4.0版本测试发现torch.bool是有的,但 ...
- pytorch的torch.utils.data.DataLoader认识
PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口, 该接 ...
- pytorch中torch.nn构建神经网络的不同层的含义
主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...
随机推荐
- 【CF】掉分总结
比赛总结 前情提要 自从前段时间连续掉分,就心态崩了,还是自己太菜,一直想写个总结,看看这几场比赛都干了啥,以后准备怎么办.鸽了这么久的总结,是该写写了. 这是正文 首先大致提一下情感曲线(菜的真实) ...
- 代码随想录算法训练营Day31 贪心算法| 122.买卖股票的最佳时机II 55. 跳跃游戏 45.跳跃游戏II
代码随想录算法训练营 122.买卖股票的最佳时机II 题目链接:122.买卖股票的最佳时机II 给定一个数组,它的第 i个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润. ...
- filler 抓取手机app的数据,手机wifi设置
1.处于同一局域网下, 2.手机的代服务器修改为手动 3.代理服务器,名称为本机ip地址端口为8888,可以自己设置 4.fillder上面选择允许远程链接
- drf之频率类源码
1 频率类 写一个类,继承SimpleRateThrottle,重写get_cache_key,返回[ip,用户id]什么,就以什么做限制,编写类属性 scope = 字符串,在配置文件中配置 'DE ...
- S32DS学习日志:debug文件和烧录的.hex文件
工程导入之后先clean一下,重新编译生成的文件默认在Production文件下面,得重新设置 折腾半天用jlink烧录没反应,原来是这里错了. production下的文件是用来用来集成bootlo ...
- 如何使用Stable Diffusion生成艺术二维码?
硬件准备 物理内存:至少16G(8G直接安装阶段就卡死) N卡:此处我使用GTX 1660 6G (2019年双12购买) 操作系统 windows 11 软件准备 网络要通畅 git: https: ...
- Helm实战案例二:在Kubernetes(k8s)上使用helm安装部署日志管理系统EFK
目录 一.系统环境 二.前言 三.日志管理系统EFK简介 四.helm安装EFK 4.1 helm在线安装EFK 4.2 helm离线安装EFK(推荐) 五.访问kibana 5.1 数据分片 六.卸 ...
- Taro项目引入Tailwindcss
前情 Tailwind CSS 是一个原子类 CSS 框架,它将基础的 CSS 全部拆分为原子级别,同时还补全各种浏览器模式前缀,兼容性也不错.它的工作原理是扫描所有 HTML 文件.JavaScri ...
- C++面试八股文:如何实现一个strncpy函数?
某日二师兄参加XXX科技公司的C++工程师开发岗位第31面: 面试官:strcpy函数使用过吧? 二师兄:用过. 面试官:这个函数有什么作用? 二师兄:主要用做字符串复制,将于字符从一个位置复制到另一 ...
- RocketMq5.0 任意延迟时间 TimerMessageStore 源码解析
TimerMessageStore 简略介绍 延迟队列 rmq_sys_wheel_timer 指定时间的延迟消息.会先投递到 rmq_sys_wheel_timer 队列中 然后由 TimerMes ...