The torch.autograd.grad function is a part of PyTorch's automatic differentiation package and is used to compute the gradients of given outputs with respect to given inputs. This function is useful when you need to compute gradients explicitly, rather than accumulating them in the .grad attribute of the input tensors.

Parameters:

  1. outputs: A sequence of tensors representing the outputs of the differentiated function.
  2. inputs: A sequence of tensors for which gradients will be calculated.
  3. grad_outputs: The "vector" in the vector-Jacobian product, usually gradients with respect to each output. Default is None.
  4. retain_graph: If set to False, the computation graph will be freed. Default value depends on the create_graph parameter.
  5. create_graph: If set to True, the graph of the derivative will be constructed, allowing higher-order derivative products. Default is False.
  6. allow_unused: If set to False, specifying unused inputs when computing outputs will raise an error. Default is False.
  7. is_grads_batched: If set to True, the first dimension of each tensor in grad_outputs will be interpreted as the batch dimension. Default is False.

Return type:

A tuple containing the gradients with respect to each input tensor.

Example:

Consider a simple example of computing the gradient of a function y = x^2 with respect to x. Here, x is the input and y is the output.

import torch

# Define the input tensor and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True) # Define the function y = x^2
y = x ** 2 # Compute the gradient of y with respect to x
grads = torch.autograd.grad(outputs=y, inputs=x) print(grads) # Output: (tensor(4.0),)

In this example, we first define the input tensor x with a value of 2.0 and enable gradient tracking by setting requires_grad=True. Then, we define the function y = x^2. Next, we compute the gradient of y with respect to x using torch.autograd.grad(outputs=y, inputs=x). The result is a tuple containing the gradient (4.0 in this case), which is the derivative of x^2 with respect to x evaluated at x=2.


The grad_outputs parameter in the torch.autograd.grad function represents the "vector" in the vector-Jacobian product. It is a sequence of tensors containing the gradients with respect to each output. The grad_outputs parameter is used when you want to compute a specific vector-Jacobian product, instead of the full Jacobian matrix.

When the gradient is computed using torch.autograd.grad, PyTorch computes the dot product of the Jacobian matrix (the matrix of partial derivatives) and the provided grad_outputs vector. If grad_outputs is not provided (i.e., set to None), PyTorch assumes it to be a vector of ones with the same shape as the output tensor.

Here's an example to help illustrate the concept:

import torch

# Define input tensors and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True) # Define the output function: z = x^2 + y^2
z = x ** 2 + y ** 2 # Compute the gradients of z with respect to x and y using different grad_outputs values # Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=z, inputs=(x, y))
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor(4.0), tensor(6.0)) # Case 2: Custom grad_outputs (scalar value)
grad_outputs_scalar = torch.tensor(2.0)
grads2 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_scalar)
print("Case 2 - Custom grad_outputs (scalar):", grads2) # Output: (tensor(8.0), tensor(12.0)) # Case 3: Custom grad_outputs (tensor value)
grad_outputs_tensor = torch.tensor(3.0)
grads3 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_tensor)
print("Case 3 - Custom grad_outputs (tensor):", grads3) # Output: (tensor(12.0), tensor(18.0))

In this example, we define two input tensors x and y with values 2.0 and 3.0 respectively, and enable gradient tracking by setting requires_grad=True. Then, we define the output function z = x^2 + y^2. We compute the gradients of z with respect to x and y using three different values for grad_outputs.

  1. Case 1 - Default grad_outputs: The gradients are (4.0, 6.0), which correspond to the partial derivatives of z with respect to x and y (2x and 2y) evaluated at x=2 and y=3.
  2. Case 2 - Custom grad_outputs (scalar): We provide a scalar value of 2.0 as grad_outputs. The gradients are (8.0, 12.0), which are the original gradients (4.0, 6.0) multiplied by the scalar value 2.
  3. Case 3 - Custom grad_outputs (tensor): We provide a tensor value of 3.0 as grad_outputs. The gradients are (12.0, 18.0), which are the original gradients (4.0, 6.0) multiplied by the tensor value 3.

As you can see from the examples, providing different values for grad_outputs affects the resulting gradients, as it represents the vector in the vector-Jacobian product. This parameter can be useful when you want to weight the gradients differently, or when you need to compute a specific vector-Jacobian product.

Here's another example with a multi-output function to further illustrate the concept:

import torch

# Define input tensor and enable gradient tracking
x = torch.tensor([2.0, 3.0], requires_grad=True) # Define the multi-output function: y = [x0^2, x1^2]
y = x ** 2 # Compute the gradients of y with respect to x using different grad_outputs values # Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=y, inputs=x)
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor([4., 6.]),) # Case 2: Custom grad_outputs (tensor)
grad_outputs_tensor = torch.tensor([1.0, 2.0])
grads2 = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=grad_outputs_tensor)
print("Case 2 - Custom grad_outputs (tensor):", grads2) # Output: (tensor([ 4., 12.]),)

In this example, we define an input tensor x with two elements and enable gradient tracking. We then define a multi-output function y = [x0^2, x1^2]. We compute the gradients of y with respect to x using different values for grad_outputs.

  1. Case 1 - Default grad_outputs: The gradients are (4.0, 6.0), which correspond to the partial derivatives of y with respect to x (2x0 and 2x1) evaluated at x0=2 and x1=3.
  2. Case 2 - Custom grad_outputs (tensor): We provide a tensor with values [1.0, 2.0] as grad_outputs. The gradients are (4.0, 12.0), which are the original gradients (4.0, 6.0) multiplied element-wise by the grad_outputs tensor.

In the second case, the gradients are computed as the product of the Jacobian matrix and the provided grad_outputs tensor. This allows us to compute specific vector-Jacobian products or weight the gradients differently for each output.

Pytorch语法——torch.autograd.grad的更多相关文章

  1. Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析

    backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph ...

  2. DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TORCH.AUTOGRAD

    torch.autograd 是PyTorch的自动微分引擎,用以推动神经网络训练.在本节,你将会对autograd如何帮助神经网络训练的概念有所理解. 背景 神经网络(NNs)是在输入数据上执行的嵌 ...

  3. PyTorch 介绍 | AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD

    训练神经网络时,最常用的算法就是反向传播.在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整. 为了计算这些梯度,PyTorch内置了名为 torch.autograd 的微分引擎. ...

  4. PyTorch教程之Autograd

    在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Varia ...

  5. PyTorch Tutorials 2 AUTOGRAD: AUTOMATIC DIFFERENTIATION

    %matplotlib inline Autograd: 自动求导机制 PyTorch 中所有神经网络的核心是 autograd 包. 我们先简单介绍一下这个包,然后训练第一个简单的神经网络. aut ...

  6. [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList

    1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...

  7. Windows中安装Pytorch和Torch

    近年来,深度学习框架如雨后春笋般的涌现出来,如TensorFlow.caffe.caffe2.PyTorch.Keras.Theano.Torch等,对于从事计算机视觉/机器学习/图像处理方面的研究者 ...

  8. Pytorch:module 'torch' has no attribute 'bool'

    Pytorch:module 'torch' has no attribute 'bool' 这个应该是有些版本的Pytorch会遇到这个问题,我用0.4.0版本测试发现torch.bool是有的,但 ...

  9. pytorch的torch.utils.data.DataLoader认识

    PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口, 该接 ...

  10. pytorch中torch.nn构建神经网络的不同层的含义

    主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...

随机推荐

  1. Windows server 2012 r2 激活方法

    slmgr /ipk W3GGN-FT8W3-Y4M27-J84CP-Q3VJ9 slmgr /skms kms.03k.org slmgr /ato

  2. NLM 公布了一个新的重新设计的 PubMed 数据库

    经常使用 PubMed 的童鞋可能已经发现,美国国家医学图书馆(NLM)在今年 10 月份左右发布了一个新的重新设计的版本以取代 PubMed 数据库的现有版本,新版本现在已经上线,可以通过下面的链接 ...

  3. C#.NET Framework RSA 公钥加密 私钥解密 ver:20230609

    C#.NET Framework RSA 公钥加密 私钥解密 ver:20230609 环境说明: .NET Framework 4.6 的控制台程序 . .NET Framework 对于RSA的支 ...

  4. 尚医通day13【预约挂号】(内附源码)

    页面预览 预约挂号 根据预约周期,展示可预约日期,根据有号.无号.约满等状态展示不同颜色,以示区分 可预约最后一个日期为即将放号日期 选择一个日期展示当天可预约列表 预约确认 第01章-预约挂号 接口 ...

  5. 你的专属音乐生成器「GitHub 热点速览」

    如果你制作视频,一定会碰到配乐的问题.虽然网上找的一些免费配乐能勉强满足需求,但是如果有个专属的配乐生成器,根据你的视频画面生成对应配乐是不是不错呢?audiocraft 也许能帮助你,把相关画面用文 ...

  6. Pinot2的无人机传感器和摄像头

    目录 1. 引言 2. 技术原理及概念 2.1 基本概念解释 2.2 技术原理介绍 2.3 相关技术比较 无人机传感器和摄像头在Pinot 2中得到广泛应用,其目的是为Pinot 2提供全面的传感器和 ...

  7. 从AWS中学习如何使用AmazonDynamoDB存储卷

    目录 <35. <从 AWS 中学习如何使用 Amazon DynamoDB 存储卷>>:从 AWS 中学习如何使用 Amazon DynamoDB 存储卷 随着云计算技术的迅 ...

  8. Avalonia开发Markdown编辑器

    Avalonia开发Markdown编辑器 今天熟悉Avalonia UI,做一个Markdown的文本编辑器. 代码我上传了Github,地址: https://github.com/raokun/ ...

  9. 浅析switch和if(开发中这两者的优缺点;分析出优缺点在使用就能更确定自己需要使用哪个函数了)

    分析 Switch 相较于 if 的优点 1.switch 执行效率  高于  if 的执行效率 分析: switch是在编译阶段将子函数的地址和判断条件绑定了,只要直接将a的直接映射到子函数地址去执 ...

  10. 【Mybatis】动态SQL

    目录 动态SQL if语句 动态SQL if+where语句 动态SQL if+set语句 动态SQL choose(when,otherwise)语句 动态SQL trim语句 动态SQL SQL片 ...