Pytorch语法——torch.autograd.grad
The torch.autograd.grad function is a part of PyTorch's automatic differentiation package and is used to compute the gradients of given outputs with respect to given inputs. This function is useful when you need to compute gradients explicitly, rather than accumulating them in the .grad attribute of the input tensors.
Parameters:
- outputs: A sequence of tensors representing the outputs of the differentiated function.
- inputs: A sequence of tensors for which gradients will be calculated.
- grad_outputs: The "vector" in the vector-Jacobian product, usually gradients with respect to each output. Default is None.
- retain_graph: If set to False, the computation graph will be freed. Default value depends on the
create_graphparameter. - create_graph: If set to True, the graph of the derivative will be constructed, allowing higher-order derivative products. Default is False.
- allow_unused: If set to False, specifying unused inputs when computing outputs will raise an error. Default is False.
- is_grads_batched: If set to True, the first dimension of each tensor in grad_outputs will be interpreted as the batch dimension. Default is False.
Return type:
A tuple containing the gradients with respect to each input tensor.
Example:
Consider a simple example of computing the gradient of a function y = x^2 with respect to x. Here, x is the input and y is the output.
import torch
# Define the input tensor and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True)
# Define the function y = x^2
y = x ** 2
# Compute the gradient of y with respect to x
grads = torch.autograd.grad(outputs=y, inputs=x)
print(grads) # Output: (tensor(4.0),)
In this example, we first define the input tensor x with a value of 2.0 and enable gradient tracking by setting requires_grad=True. Then, we define the function y = x^2. Next, we compute the gradient of y with respect to x using torch.autograd.grad(outputs=y, inputs=x). The result is a tuple containing the gradient (4.0 in this case), which is the derivative of x^2 with respect to x evaluated at x=2.
The grad_outputs parameter in the torch.autograd.grad function represents the "vector" in the vector-Jacobian product. It is a sequence of tensors containing the gradients with respect to each output. The grad_outputs parameter is used when you want to compute a specific vector-Jacobian product, instead of the full Jacobian matrix.
When the gradient is computed using torch.autograd.grad, PyTorch computes the dot product of the Jacobian matrix (the matrix of partial derivatives) and the provided grad_outputs vector. If grad_outputs is not provided (i.e., set to None), PyTorch assumes it to be a vector of ones with the same shape as the output tensor.
Here's an example to help illustrate the concept:
import torch
# Define input tensors and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)
# Define the output function: z = x^2 + y^2
z = x ** 2 + y ** 2
# Compute the gradients of z with respect to x and y using different grad_outputs values
# Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=z, inputs=(x, y))
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor(4.0), tensor(6.0))
# Case 2: Custom grad_outputs (scalar value)
grad_outputs_scalar = torch.tensor(2.0)
grads2 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_scalar)
print("Case 2 - Custom grad_outputs (scalar):", grads2) # Output: (tensor(8.0), tensor(12.0))
# Case 3: Custom grad_outputs (tensor value)
grad_outputs_tensor = torch.tensor(3.0)
grads3 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_tensor)
print("Case 3 - Custom grad_outputs (tensor):", grads3) # Output: (tensor(12.0), tensor(18.0))
In this example, we define two input tensors x and y with values 2.0 and 3.0 respectively, and enable gradient tracking by setting requires_grad=True. Then, we define the output function z = x^2 + y^2. We compute the gradients of z with respect to x and y using three different values for grad_outputs.
- Case 1 - Default
grad_outputs: The gradients are (4.0, 6.0), which correspond to the partial derivatives of z with respect to x and y (2x and 2y) evaluated at x=2 and y=3. - Case 2 - Custom
grad_outputs(scalar): We provide a scalar value of 2.0 asgrad_outputs. The gradients are (8.0, 12.0), which are the original gradients (4.0, 6.0) multiplied by the scalar value 2. - Case 3 - Custom
grad_outputs(tensor): We provide a tensor value of 3.0 asgrad_outputs. The gradients are (12.0, 18.0), which are the original gradients (4.0, 6.0) multiplied by the tensor value 3.
As you can see from the examples, providing different values for grad_outputs affects the resulting gradients, as it represents the vector in the vector-Jacobian product. This parameter can be useful when you want to weight the gradients differently, or when you need to compute a specific vector-Jacobian product.
Here's another example with a multi-output function to further illustrate the concept:
import torch
# Define input tensor and enable gradient tracking
x = torch.tensor([2.0, 3.0], requires_grad=True)
# Define the multi-output function: y = [x0^2, x1^2]
y = x ** 2
# Compute the gradients of y with respect to x using different grad_outputs values
# Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=y, inputs=x)
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor([4., 6.]),)
# Case 2: Custom grad_outputs (tensor)
grad_outputs_tensor = torch.tensor([1.0, 2.0])
grads2 = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=grad_outputs_tensor)
print("Case 2 - Custom grad_outputs (tensor):", grads2) # Output: (tensor([ 4., 12.]),)
In this example, we define an input tensor x with two elements and enable gradient tracking. We then define a multi-output function y = [x0^2, x1^2]. We compute the gradients of y with respect to x using different values for grad_outputs.
- Case 1 - Default
grad_outputs: The gradients are (4.0, 6.0), which correspond to the partial derivatives of y with respect to x (2x0 and 2x1) evaluated at x0=2 and x1=3. - Case 2 - Custom
grad_outputs(tensor): We provide a tensor with values[1.0, 2.0]asgrad_outputs. The gradients are (4.0, 12.0), which are the original gradients (4.0, 6.0) multiplied element-wise by thegrad_outputstensor.
In the second case, the gradients are computed as the product of the Jacobian matrix and the provided grad_outputs tensor. This allows us to compute specific vector-Jacobian products or weight the gradients differently for each output.
Pytorch语法——torch.autograd.grad的更多相关文章
- Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph ...
- DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TORCH.AUTOGRAD
torch.autograd 是PyTorch的自动微分引擎,用以推动神经网络训练.在本节,你将会对autograd如何帮助神经网络训练的概念有所理解. 背景 神经网络(NNs)是在输入数据上执行的嵌 ...
- PyTorch 介绍 | AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD
训练神经网络时,最常用的算法就是反向传播.在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整. 为了计算这些梯度,PyTorch内置了名为 torch.autograd 的微分引擎. ...
- PyTorch教程之Autograd
在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Varia ...
- PyTorch Tutorials 2 AUTOGRAD: AUTOMATIC DIFFERENTIATION
%matplotlib inline Autograd: 自动求导机制 PyTorch 中所有神经网络的核心是 autograd 包. 我们先简单介绍一下这个包,然后训练第一个简单的神经网络. aut ...
- [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...
- Windows中安装Pytorch和Torch
近年来,深度学习框架如雨后春笋般的涌现出来,如TensorFlow.caffe.caffe2.PyTorch.Keras.Theano.Torch等,对于从事计算机视觉/机器学习/图像处理方面的研究者 ...
- Pytorch:module 'torch' has no attribute 'bool'
Pytorch:module 'torch' has no attribute 'bool' 这个应该是有些版本的Pytorch会遇到这个问题,我用0.4.0版本测试发现torch.bool是有的,但 ...
- pytorch的torch.utils.data.DataLoader认识
PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口, 该接 ...
- pytorch中torch.nn构建神经网络的不同层的含义
主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...
随机推荐
- vue全家桶进阶之路18:Vue Router
Vue Router 是 Vue.js 的官方路由管理器,它可以帮助我们实现单页应用(Single Page Application,SPA)的前端路由. Vue Router 基于 Vue.js 的 ...
- 图数据库 NebulaGraph 的内存管理实践之 Memory Tracker
数据库的内存管理是数据库内核设计中的重要模块,内存的可度量.可管控是数据库稳定性的重要保障.同样的,内存管理对图数据库 NebulaGraph 也至关重要. 图数据库的多度关联查询特性,往往使图数据库 ...
- 使用android studio发布android与flutter混合开发项目
一.生成androd签名证书 Android studio的Build > Grenerate Signed Bundle 选择apk 点击Create New 录入对应的签名信息:点击确定 对 ...
- Flutter三棵树系列之BuildOwner
引言 Flutter开发中三棵树的重要性不言而喻,了解其原理有助于我们开发出性能更优的App,此文主要从源码角度介绍Element树的管理类BuildOwner. 是什么? BuildOwner是el ...
- 谈谈ChatGPT是否可以替代人
起初我以为我是搬砖的,最近发现其实只是一块砖,哪里需要哪里搬. 这两天临时被抽去支援跨平台相关软件开发,帮忙画几个界面.有了 ChatGPT 之后就觉得以前面向 Googel 编程会拉低我滴档次和逼格 ...
- 《数据结构》之栈和堆结构及JVM简析
导言: 在数据结构中,我们第一了解到了栈或堆栈,它的结构特点是什么呢?先进后出,它的特点有什么用呢?我们在哪里可以使用到栈结构,栈结构那么简单,使用这么久了为什么不用其它结构替代? 一.程序在内存中的 ...
- [ARM汇编]计算机原理与数制基础—1.1.2 二进制与十进制数制转换
在计算机中,我们通常使用二进制数制来表示数据,因为计算机的基本电平只有两种状态:高电平(通常表示为 1)和低电平(通常表示为 0).而在我们的日常生活中,我们习惯使用十进制数制.为了方便理解,我们需要 ...
- springboot使用Websocket写一个聊天室
1 <!--websocket 依赖--> 2 <dependency> 3 <groupId>org.springframework.boot</group ...
- Windows服务启动exe无界面终极解决方案
1.前言 我这个方案(C#操作)是彻底解决[从Windows服务启动程序exe,程序无界面]问题的终极解决方案,终极方案,绝对的终极方案,本来打算收钱的,还是算了,你们也不容易,关注我一下就行.后 ...
- SQL Sever 各版本的适用环境
很多用visual studio做开发的朋友经常会用到sqlserver数据库,但是往往在选择的时候就不知道该使用哪个版本了,今天就给大家分享一下sqlserver各个版本之间的区别,以及各个版本之间 ...