PanGu-Coder:函数级的代码生成模型
摘要:华为诺亚方舟实验室语音语义实验室联合华为云PaaS技术创新实验室基于PanGu-Alpha研制出了当前业界最新的模型PanGu-Coder
本文分享自华为云社区《PanGu-Coder 函数级的代码生成模型》,作者:DevAI 。
1. 概述
基于预训练模型的生成技术在自然语言处理领域获得了极大的成功。近年来,包括OpenAI GPT-3、华为PanGu-Alpha等在内的文本生成模型展示出了惊人的创造力,生成能力远超以往的技术,逐渐成为序列生成的一种基本范式,并显示出了巨大的商业潜力。在这种范式的引导下,研究人员开始尝试将语言生成模型引入到软件工程领域,并在代码生成与补全等任务中取得了突破性进展。其中,最广为人知的当属微软发布的AI辅助编程工具Copilot。
近日,华为诺亚方舟实验室语音语义实验室联合华为云PaaS技术创新实验室基于PanGu-Alpha研制出了当前业界最新的模型PanGu-Coder [1]。与业界标杆Copilot 背后的Codex[2]以及谷歌的AlphaCode等[3][4]相比,PanGu-Coder在代码生成的一次通过率(PASS@1)指标上不仅大幅超越同等规模的模型,甚至超越了参数量规模更大的模型。在支持的语言上,除英文外,PanGu-Coder在中文上同样有出色的表现,在未来也可以更好地服务使用中文的开发者。在内测中还发现:PanGu-Coder不但熟悉常见算法,还能熟练地使用各种API,甚至可以求解高等数学问题。相信经过不断打磨,PanGu-Coder将逐步成为编程人员的聪明助手。
2. 训练数据
PanGu-Coder使用了380GB的原始Python文件,通过MD5校验,限制文件大小、代码长度以及AST解析等方式对原始文件进行了清洗、去重等工作,最终得到了147GB的数据用作模型训练阶段的输入。
为了提升函数级代码生成的效果,每个Python文件中的代码语料均按照函数级的方式进行了重新组织。例如:如果某个函数的定义之后紧接着对于函数的自然语言注释,该注释将被放置到函数定义之前,形成自然语言到代码的配对数据,并用以构建训练数据集。
3. 训练方法
PanGu-Coder将训练分为了两个阶段:第一阶段使用了全量的代码数据进行训练;第二阶段选择了更符合目标任务的自然语言和代码对作为训练数据对模型进行调优。
3.1 模型架构

图1 PanGu-Coder的模型结构
由于PanGu-Alpha所采用的的自回归Transformer架构所具备强大的文本生成能力,在PanGu-Coder的训练中也沿用了此模型架构用于代码生成任务,其架构如图1所示。同时,PanGu-Coder也沿用了PanGu-Alpha的中英文多语词表,从而同时具备支持中英文输入的能力。
3.2 训练方法
受课程学习(Currilum Learning)启发,PanGu-Coder采用了两阶段训练的方式进行训练:1)在原始语料上,采用传统的自回归语言建模(Causal language modeling,CLM)进行训练;2)在经过筛选的语料上,仅对<自然语言,代码>平行句对样本,采用创新的代码自回归语言建模(Code-CLM)进行训练。

图2 PanGu-Coder的两阶段样本构成方式
PanGu-Coder的两阶段样本示例如图2所示。图2(左)为第一阶段训练样本,图2(右)为第二阶段样本。在第一阶段的训练中,PanGu-Coder具备了自然语言和代码交错的语言模型的能力,而第二阶段样本则帮助PanGu-Coder在通过自然语言进行代码生成的任务上得到了更好的适配。

图3 PanGu- Coder: Code-CLM 损失函数
在第二阶段的训练中,PanGu-Coder采用了专门为代码生成而设计的Code-CLM作为其损失函数。如图3所示。在训练过程中,Code-CLM仅保留代码部分的Loss计算结果,同时忽略了自然语言部分的Loss。Code-CLM损失函数的采用,让PanGu-Coder更专注于学习生成代码序列的同时减少了自然语言序列带来的干扰,使得PanGu-Coder的第二阶段训练数据与训练目标都更接近代码生成任务的真实场景。
4. 实验结果
4.1 模型生成的通过率
模型的一次生成通过率(PASS@1)是代码语言生成模型最重要的能力衡量指标。PanGu-Coder采用了OpenAI发布的HumanEval以及谷歌发布的MBPP两个函数级代码生成任务的数据集作为评测目标。表1给出了HumanEval中一个非常简单的例子。PanGu-Coder生成的代码需要通过单元测试(Unit Tests)才被认为生成正确。

表1 HumanEval 示例
在HumanEval数据集上,与业界标杆Codex(OpenAI)以及包括AlphaCode(Google Deep Mind)、CodeGen(Saleforce)、 INCoder(Meta)等模型相比,PanGu-Coder在3亿和26亿模型上的一次通过率PASS@1均达到最优。值得一提的是,3亿参数的PanGu-Coder模型(PASS@1=17.07%)超越了Codex (PASS@1=16.22%)接近7亿参数的模型结果,基本持平了谷歌10亿的模型(表2)。在MBPP数据集上, 26亿参数的模型超越了META INCoder 接近70亿参数的模型效果(表3)。另外,在训练的充分程度上,PanGu-Coder是所有模型中所用数据量以及计算量最小(train tokens)的模型。这一结果充分说明了PanGu-Coder数据集构建策略和分阶段训练设计的合理性,并展示了采用这种方式能够在函数级代码生成这一最重要场景上达到业界最优。

表2 PanGu-Coder在HumanEval上的一次通过率以及十次通过率

表3 PanGu-Coder在MBPP上的一次通过率以及十次通过率
为进一步提升模型函数级代码生成的能力,PanGu-Coder收集了包括CodeContest、CodeSearchNet、APPS在内的业界已公开的大规模函数级数据集对模型进行微调(Fine-tune),得到了PanGu-Coder-FT。实验结果表明,微调模型在MBPP以及HumanEval上的表现到了明显提升(表4)。

表4 PanGu-Coder: 3亿模型Fine-tune结果
实际编码过程中,通常在实现一个函数之前,会预先设计若干测试用例来测试函数实现结果。在HumanEval 164个函数描述中,有130个问题描述中包含了预设的测试用例。为验证基于测试用例的代码生成的有效性,PanGu-Coder在进行多次生成(200次)的情况下使用这些测试用例对生成的代码进行了过滤,并统计了过滤后代码的通过率。从最终结果可以看出,利用测试用例对生成的代码进行过滤可以极大地提升通过率,其中3亿的模型可以达到41.52%。

表5 PanGu-Coder: 3亿模型测试用例过滤结果
4.2 工具内测
PanGu-Coder模型已集成到了华为云的代码开发辅助工具中,可以在IDE中使用自然语言描述生成函数级的Python代码,或者根据上下文进行补全。
如下是内测过程中产生的几个实际的例子。
(1)常见的数据结构算法
Input: 使用冒泡排序的方法对数组进行排序。
OutPut:

(2)SQL查询功能
Input: 使用mysql, 从表 “AI research” 的所有记录, 选择address为"Hong Kong Science Park" 的记录,并显示结果.
OutPut:

(3)使用机器学习工具创建文本分类器
Input: create a text binary sentiment classifier .
Output:

(4)高等数学题1: 求微分
Input: Using sympy find the derivative of the function using the definition of the derivative.f(x)= (x**2-1)/(2*x-3).
Output:

(5)高等数学题2,求概率分布
Input: One generates a number x from a uniform distribution on the interval [0, θ].One decides to test H0 : θ = 2 against HA : θ = 2 by rejecting H0 if x ≤ 0.1 or x ≥ 1.9.Using simulations, compute the probability of a type I error.
Output:

5. 展望
PanGu-Coder是基于华为的预训练语言模型PanGu-Alpha演进而来的代码生成模型,在模型训练的高效性以及函数级生成与补全性能上均达到业界领先的水平。目前PanGu-Coder已经集成在华为云的代码开发辅助工具中进行内测。同时PanGu-Coder也在不断的迭代与演进,以支持更多的编程语言、提供更好、更快的生成能力。
文章来自 PaaS技术创新Lab,PaaS技术创新Lab隶属于华为云,致力于综合利用软件分析、数据挖掘、机器学习等技术,为软件研发人员提供下一代智能研发工具服务的核心引擎和智慧大脑。我们将聚焦软件工程领域硬核能力,不断构筑研发利器,持续交付高价值商业特性!加入我们,一起开创研发新“境界”!
PaaS技术创新Lab主页链接:https://www.huaweicloud.com/lab/paas/home.html
参考文献:
[1] Christopoulou, Fenia, et al. "PanGu-Coder: Program Synthesis with Function-Level Language Modeling." arXiv preprint arXiv:2207.11280 (2022).
[2] Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).
[3] Li, Yujia, et al. "Competition-level code generation with AlphaCode." arXiv preprint arXiv:2203.07814 (2022).
[4] Nijkamp, Erik, et al. "A conversational paradigm for program synthesis." arXiv preprint arXiv:2203.13474 (2022).
PanGu-Coder:函数级的代码生成模型的更多相关文章
- javascript中0级DOM和2级DOM事件模型浅析
Javascript程序使用的是事件驱动的设计模式,为一个元素添加事件监听函数,当这个元素的相应事件被触发那么其添加的事件监听函数就被调用: <input type="button&q ...
- javascript中0级DOM和2级DOM事件模型浅析 分类: C1_HTML/JS/JQUERY 2014-08-06 15:22 253人阅读 评论(0) 收藏
Javascript程序使用的是事件驱动的设计模式,为一个元素添加事件监听函数,当这个元素的相应事件被触发那么其添加的事件监听函数就被调用: <input type="button&q ...
- pytest_用例运行级别_函数级
''' 函数级(setup_function/teardown_function只对函数用例生 效(不在类中)在类中是用该方法不生效 ''' import pytest def setup_mod ...
- fcntl()函数之非阻塞模型
优点:设置标准输入为非阻塞(有数据则读 没有数据则立即返回),常用于网络通信以及轻量信息多并发中 步骤: 1.oldflag=fcntl(STDIN_FILENO,F_GETFL); 获取标准输入的文 ...
- opencv函数制作的时钟模型
http://www.cnblogs.com/sytu/p/4192652.html 在秒针模型的基础上添加了分针和时针,并且添加了暂停控件和设置时间的功能. #include"cv.h&q ...
- opencv函数制作的秒针模型
曾经做过,没想到这次再次写这篇代码却用了这么久的时间.这回我要记住他. #include"cv.h" #include"highgui.h" int main( ...
- CodeArts Snap:辅助你编程的神器
摘要:通过将自然语言转化为规范可阅读.无开源漏洞的安全编程语言,提升开发者编程效率,助力企业快速响应市场需求. 本文分享自华为云社区<华为云发布智能编程助手 CodeArts Snap!> ...
- Entity Framework 6 Recipes 2nd Edition(10-5)译 -> 在存储模型中使用自定义函数
10-5. 在存储模型中使用自定义函数 问题 想在模型中使用自定义函数,而不是存储过程. 解决方案 假设我们数据库里有成员(members)和他们已经发送的信息(messages) 关系数据表,如Fi ...
- Entity Framework 6 Recipes 2nd Edition(11-1)译 -> 从“模型定义”函数返回一个标量值
第11章函数 函数提供了一个有力代码复用机制, 并且让你的代码保持简洁和易懂. 它们同样也是EF运行时能利用的数据库层代码.函数有几类: Rowset Functions, 聚合函数, Ranking ...
- R语言实现SOM(自组织映射)模型(三个函数包+代码)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SOM自组织映射神经网络模型 的R语言实现 笔 ...
随机推荐
- H5-geolocation学习
geolocation--定位 PC--IP地址 精度比较低 IP库 Chrome -> Google 手机--GPS window.navigator.geolocation 单次 getCu ...
- 虹科喜报 | 虹科技术工程师【国内首批】拿下Redis认证开发者证书!
要说虹科数据库技术工程师有多强悍,认证考试2022年12月上线,次年2月就以全国首批速度强势通过考试,并于两周后正式收到[Redis认证开发人员]证书! 虹科小云忍不住浅浅炫耀一下: 或许大家对Red ...
- 详解GuassDB数据库权限命令:GRANT和REVOKE
本文分享自华为云社区<GuassDB数据库的GRANT & REVOKE>,作者: Gauss松鼠会小助手2 . 一.GaussDB的权限概述 在数据库中,对象的创建者将成为该对象 ...
- IDEA在Debug模式下修改Java类,不小心关闭 Reload Changed Classes for AppArrowWebApplication 框提示之后的处理
问题描述:Springboot maven 聚合项目里面,经常要启动多个服务. 当我们修改其中一个服务的时候,debug 启动时 idea 就会提示是否需要重新编译修改的内容,弹窗让你选择reload ...
- 20.7 OpenSSL 套接字SSL加密传输
OpenSSL 中的 SSL 加密是通过 SSL/TLS 协议来实现的.SSL/TLS 是一种安全通信协议,可以保障通信双方之间的通信安全性和数据完整性.在 SSL/TLS 协议中,加密算法是其中最核 ...
- 教你使用逻辑公式和恒等式等价改写SQL
今天同事给我一条2秒的SQL看看能不能优化. 原始SQL: SELECT pk_dept FROM aaaa WHERE 1 = 1 AND ((pk_group = '0001A1100000000 ...
- Android 11 后的应用数据和文件
Android应用数据的保存方式有四种,分别是应用专属存储空间.共享存储.偏好设置.数据库. 应用专属存储空间 应用专属存储空间:存放应用专属文件,主要包括两个空间,卸载后移除 内部存储空间:位于系统 ...
- 使用 LCM LoRA 4 步完成 SDXL 推理
LCM 模型 通过将原始模型蒸馏为另一个需要更少步数 (4 到 8 步,而不是原来的 25 到 50 步) 的版本以减少用 Stable Diffusion (或 SDXL) 生成图像所需的步数.蒸馏 ...
- C#/.NET/.NET Core优秀项目和框架2023年11月简报
前言 公众号每月定期推广和分享的C#/.NET/.NET Core优秀项目和框架(公众号每周至少推荐两个优秀的项目和框架当然节假日除外),公众号推文有项目和框架的介绍.功能特点以及部分截图等(打不开或 ...
- 快速认识,前端必学编程语言:JavaScript
JavaScript是构建Web应用必学的一门编程语言,也是最受开发者欢迎的热门语言之一.所以,如果您还不知道JavaScript的用处.特点的话,赶紧补充一下这块基础知识. JavaScript 是 ...