由来

时间回到 2017 年,老东家要上 Kubernetes 了,有幸参与和学习(主要是学习)。当时遇到的一了所有 Java 容器化者都遇到的坑:JDK8 不为容器化设计综合症。最简单的例子是Runtime.getRuntime().availableProcessors()返回了主机的 CPU 数,而非期望的容器自身的cpu share/quota,或说 k8s 的 cpu request/limit

时间到了 2021 年,一切本该云淡风轻(虽然工资依然追不上CPI和房价)。虽然我在的项目还是使用 JDK8,但好歹也是 jdk 1.8.0_261 了,已经 backport 了很多容器化的特性到这个版本了。最近在做项目的性能优化,在 Istio 的泥潭苦苦挣扎中。

突然前方同学传来喜讯: 把 POD 的 cpu request 由 2 变 4 后,性能有明显的优化。我在羡慕嫉妒的同时,好奇地研究了一下原理。

原理

直线思维逻辑

Kubernetes 使用 cgroup 进行资源限制:

  • cpu request 对应于 cgroup 的 share 指标。在主机CPU不足,各容器需要争抢CPU情况下,指定各容器的优先级(数字大优先,比例化)
  • cpu limit 对应于 cgroup 的 limit 指标。这是硬限制,不能超。超了就卡慢线程。

那么问题来了,测试环境主机CPU 资源充足,不存在各容器需要争抢CPU 的情况。那么,为何调大 cpu request后,会明显优化性能?

可能性:

  1. 直线思维:Linux CFS Scheduler(任务调度器)实现不太好,在非各容器需要争抢CPU情况下,cpu request 仍然影响了调度
  2. 怀疑论者:新版本的 jdk8 只是依据 cpu request 来自动计算各默认配置,如各线程池。

作为一个只懂 java 的程序员,我关注后者。

求证

作为只懂写代码的程序员,没什么比运行的程序更能帮你说话了。起码,机器不会因为你和他关系好,或等着你给他通点气,或填个KPI,就跑你的程序快一点(不要和我说linux taskset),更不会生成一个和关系有关系的小报告。

回来吧,先看看 POD 的配置:

    resources:
limits:
cpu: "16"
requests:
cpu: "2"

进入 container:

$ cd /tmp
$ cat <<EOF > /tmp/Main.java
public class Main {
public static void main(String[] args) {
System.out.println("Runtime.getRuntime().availableProcessors() = " +
Runtime.getRuntime().availableProcessors());
}
}
EOF $ javac Main.java
$ java -cp . Main
Runtime.getRuntime().availableProcessors() = 2

加点CPU request :

    resources:
limits:
cpu: "16"
requests:
cpu: "4"

进入 container:

$ cd /tmp
$ java -cp . Main
Runtime.getRuntime().availableProcessors() = 4

可见,java 得到 cpu 数,来源于 容器配置的 cpu request 。

availableProcessors() 的影响

再看看 availableProcessors() 的影响。-XX:+PrintFlagsFinal 的作用是在 jvm 启动时打印计算后的默认配置。

# Request cpu=1 时
$ java -XX:+PrintFlagsFinal -cp . Main > req1.txt # Request cpu=4 时
$ java -XX:+PrintFlagsFinal -cp . Main > req4.txt
$ diff req1.txt req4.txt

2c2
< intx ActiveProcessorCount = -1 {product}
---
> intx ActiveProcessorCount := 4 {product}
59c59
< intx CICompilerCount := 2 {product}
---
> intx CICompilerCount := 3 {product}
305c305
< uintx MarkSweepDeadRatio = 5 {product}
---
> uintx MarkSweepDeadRatio = 1 {product}
312c312
< uintx MaxHeapFreeRatio = 70 {manageable}
---
> uintx MaxHeapFreeRatio = 100 {manageable}
325c325
< uintx MaxNewSize := 178913280 {product}
---
> uintx MaxNewSize := 178782208 {product}
336,337c336,337
< uintx MinHeapDeltaBytes := 196608 {product}
< uintx MinHeapFreeRatio = 40 {manageable}
---
> uintx MinHeapDeltaBytes := 524288 {product}
> uintx MinHeapFreeRatio = 0 {manageable}
360c360
< uintx NewSize := 11141120 {product}
---
> uintx NewSize := 11010048 {product}
371c371
< uintx OldSize := 22413312 {product}
---
> uintx OldSize := 22544384 {product}
389c389
< uintx ParallelGCThreads = 0 {product}
---
> uintx ParallelGCThreads = 4 {product}
690,691c690,691
< bool UseParallelGC = false {product}
< bool UseParallelOldGC = false {product}
---
> bool UseParallelGC := true {product}
> bool UseParallelOldGC = true {product}
738c738
< Runtime.getRuntime().availableProcessors() = 1
---
> Runtime.getRuntime().availableProcessors() = 4

可见,availableProcessors() 不但影响了 jvm 的 GC 线程数,JIT 线程数,甚至是 GC算法。更大问题是一些 servlet container(如 Jetty)和 Netty 默认也会使用这个数字去配置他们的线程池。

反证

如果还是觉得Linux CFS Scheduler(任务调度器)在主机CPU过剩时,调度还是受到了 cgroup share(cpu request)影响 这个可能性需要排除。那么在POD拉起后,直接使用 linux 终端,去修改 cgroup 的 share 文件,增加一倍,再测试,就可以知道。对,反模式是排除问题的常用方法。但我没做这个测试,因我不想太科学凡事留一线。

填坑

填坑是程序员的天职,无论你喜不喜欢,无论这个坑是你挖的,还是前度留下的。这个坑有几个填法:

  1. 修改 POD CPU request 为忙时使用量,即加大request,limit 不变
  2. 升级到 JDK11,使用期默认打开的PreferContainerQuotaForCPUCount参数,即 availableProcessors() 返回 CPU limit 数。
  3. 所有默认使用availableProcessors() 的地方,修改为显式指定,如GC线程数,Netty 线程数……
  4. CPU request/limit 不变,即 request 大大 小于 limit。但显式告诉 JVM 可以使用的 CPU 数。

国际习惯,我选用了 4。原因:

  • POD 如果配置了大的 request,相当于锁定独占了主机的资源。主机实际资源利用率一定降低。而这个 request 其实只是个忙时峰值需求,如启动时的编译,或电商的抢购。
  • 为所有默认使用availableProcessors() 的地方,修改为显式指定。这个工作量大,对未来未知的使用到 availableProcessors() 的地方不可控。
  • 升级 JDK11,不是我等程序员能定的

明白了我能做什么后,就 Just do it 了。

话说,从 JDK 8u191后,支持了-XX:ActiveProcessorCount=count参数,告诉JVM真正可用的CPU数。所以,只要:

java -XX:+PrintFlagsFinal -XX:ActiveProcessorCount=$POD_CPU_LIMIT -cp . Main
# 当然,如果觉得 $POD_CPU_LIMIT 太大,就自行调整吧

-XX:ActiveProcessorCount的说明见:https://www.oracle.com/java/t...

总结

很明显,这是个应该早几年就写的 Blog。现在估计你家已经不使用JDK8了。而一般直接到 JDK11 LTS 了。或者,本文想说的是一种求证问题的方法和态度。它或者不能直接给你带来什么好处,有时候,甚至很让一些人讨厌,影响你进升的大好前程。不过,一个行业如果要进步,还得依赖这种情怀。英文有个词:Nerd。专门形容这种态度。


扩展阅读

史前的修正 availableProcessors() 大法

在 JDK8 还没为容器化设计前,大神们只能先自行解决了。方法两种(层):

  1. mount bind 修改内核层 cpu 数的 system file
  2. 重载 gun libc 的 sysconf 函数
  3. 在 Linux 的动态 link .so 时重载 JVM_ActiveProcessorCount 函数,定制后返回

方法3相对简单。这里只说方法2:

参考: https://stackoverflow.com/que...

#include <stdlib.h>
#include <unistd.h> int JVM_ActiveProcessorCount(void) {
char* val = getenv("_NUM_CPUS");
return val != NULL ? atoi(val) : sysconf(_SC_NPROCESSORS_ONLN);
}

First, make a shared library of this:

gcc -O3 -fPIC -shared -Wl,-soname,libnumcpus.so -o libnumcpus.so numcpus.c

Then run Java as follows:

$ LD_PRELOAD=/path/to/libnumcpus.so _NUM_CPUS=2 java AvailableProcessors

方法1、2比较通用,对 JNI 等非 java 生态的同样有效,但实现需要了解一些 Linux。可以参考: https://geek-tips.imtqy.com/a...https://github.com/jvm-profil...

参考

https://christopher-batey.med...

https://www.batey.info/docker...

https://mucahit.io/2020/01/27...

https://blog.gilliard.lol/201...

https://cloud.google.com/run/...

https://stackoverflow.com/que...

https://www.oracle.com/java/t...

https://stackoverflow.com/que...

https://bugs.openjdk.java.net...

https://programmer.group/5ce1...

[转帖]Java 容器化的历史坑(史坑) - 资源限制篇的更多相关文章

  1. 利用Google开源Java容器化工具Jib构建镜像

    转载:https://blog.csdn.net/u012562943/article/details/80995373 一.前言 容器的出现让Java开发人员比以往任何时候都更接近“编写一次,到处运 ...

  2. Java容器化参数配置最佳实践

    Java是以VM为基础的,而云原生讲究的就是Native,天然的矛盾,虽然Quarkus是为GraalVM和HotSpot量身定制的K8s Native Java框架,生态原因切换成本太高,这种矛盾体 ...

  3. 新一代Java程序员必学的Docker容器化技术基础篇

    Docker概述 **本人博客网站 **IT小神 www.itxiaoshen.com Docker文档官网 Docker是一个用于开发.发布和运行应用程序的开放平台.Docker使您能够将应用程序与 ...

  4. 谷歌助力,快速实现 Java 应用容器化

    原文地址:梁桂钊的博客 博客地址:http://blog.720ui.com 欢迎关注公众号:「服务端思维」.一群同频者,一起成长,一起精进,打破认知的局限性. Google 在 2018 年下旬开源 ...

  5. jmx_prometheus_javaagent+prometheus+alertmanager+grafana完成容器化java监控告警(二)

    一.拓扑图 二.收集数据 2.1前期准备 创建共享目录,即为了各节点都创建该目录,有两个文件,做数据共享 /home/target/prom-jvm-demo 1.下载文件 jmx_prometheu ...

  6. Java 服务 Docker 容器化最佳实践

    转载自:https://mp.weixin.qq.com/s/d2PFISYUy6X6ZAOGu0-Kig 1. 概述 当我们在容器中运行 Java 应用程序时,可能希望对其进行调整参数以充分利用资源 ...

  7. 【转帖】使用容器化和 Docker 实现 DevOps 的基础知识

    使用容器化和 Docker 实现 DevOps 的基础知识 https://www.kubernetes.org.cn/6730.html 2020-02-24 15:20 灵雀云 分类:容器 阅读( ...

  8. Coding-Job:从研发到生产的容器化融合实践

    大家好,我是来自 CODING 的全栈开发工程师,我有幸在 CODING 参与了 Coding-Job 这个容器化的编排平台的研发.大家对 CODING 可能比较了解, Coding.net 是一个一 ...

  9. 国内最具影响力科技创投媒体36Kr的容器化之路

    本文由1月19日晚36Kr运维开发工程师田翰明在Rancher技术交流群的技术分享整理而成.微信搜索rancher2,添加Rancher小助手为好友,加入技术群,实时参加下一次分享~ 田翰明,36Kr ...

  10. 传统.NET 4.x应用容器化体验(1)

    我们都知道.NET Core应用可以跑在Docker上,那.NET Framework 4.x应用呢?借助阿里云ECS主机(Windows Server 2019 with Container版本), ...

随机推荐

  1. 编译安装python 3.11

    先处理下opensll的版本,以免编python译环境异常:安装 openssl-1.1.1 yum remove openssl cd /opt wget https://www.openssl.o ...

  2. freemarker实现自定义标签

    freemarker实现自定义标签 freemarker实现自定义标签其实并没有什么难度,这个功能我们叫自定义标签,在官网中称为指令,也并不是什么高级技术,只是大家没发现而已,参考下官网文档就能实现: ...

  3. 聊一聊如何整合Microsoft.Extensions.DependencyInjection和Castle.Core(二)

    聊一聊如何整合Microsoft.Extensions.DependencyInjection和Castle.Core(二) 前言 前文排版比较糟糕,这次我们使用vscode来写本文,,各位看客请见谅 ...

  4. FlinkSQL实战开发

    FlinkSQL实战开发 1.基础知识 FlinkSQL分为Table API和SQL API,是架构于Flink Core之上用SQL予以方便快捷地进行结构化数据处理的上层库. 工作流程 SQL和T ...

  5. Java 展开或折叠PDF中的书签

    PDF中的书签功能可快速定位到指定阅读位置.对多层书签可根据阅读喜好设置层级展开或折叠.本文将通过Java程序代码介绍如何来实现PDF书签展开或折叠. 程序环境 Spire.Pdf.jar( 免费版3 ...

  6. 第十三部分_awk

    一.awk介绍 1. awk概述 awk是一种编程语言,主要用于在linux/unix下对文本和数据进行处理,是linux/unix下的一个工具.数据可以来自标准输入.一个或多个文件,或其它命令的输出 ...

  7. 再拔头筹,FusionInsight为华为云大数据打造硬实力

    ​​摘要:在IDC2020大数据报告中,有云服务厂商.传统ICT 厂商,以及大数据时代的创企等三类"玩家",为何华为云能够脱颖而出? 近日,IDC发布<IDC MarketS ...

  8. 二进制SCA指纹提取黑科技:Go语言逆向技术

    摘要:SCA(Software Composition Analysis)软件成分分析,指通过对软件源码.二进制软件包等的静态分析,挖掘其所存在的开源合规.已知漏洞等安全合规风险,是一种业界常见的安全 ...

  9. Mapper that could not be found

    现象1 mapper 资源扫不到 resources 建的是 目录 ,不是 package 所以如果直接 a.b 的方式创建,会扫描不到 mapper.xml 文件 现象2 缺少配置文件 HisDru ...

  10. PPT 常规设置

    高级设置 可以将撤销次数调大,最多 150次 默认拉到PPT中的图片是被压缩的,可以设置成不压缩(解压 PPT 可查看里面的图片大小) 字体嵌入 可将自动保存时间调短,默认保存目录我习惯先保存到桌面( ...