\(Meaning\)

\(Solution\)

这道题我来讲一个不一样的解法:\(dp\)

在写 \(dp\) 之前,我们需要明确以下几个东西:状态的表示,状态转移方程,边界条件和答案的表示。

状态的表示

\(dp[i]\) 表示到达第 \(i\) 个站点所需要的最少钱数, \(w[i]\) 表示在使用最少钱数到达第 \(i\) 个站点时多余的路程。

状态转移方程

\[
dp[i]=dp[i-1]+\bigg\lceil\frac{v[i-1]-w[i-1]}{d}\bigg\rceil\times pre\_min(i-1)

\]

\[
w[i]=\bigg\lceil\frac{v[i-1]-w[i-1]}{d}\bigg\rceil-v[i-1]+w[i-1]

\]

其中 \(pre\_min(i)\) 表示前 \(i\) 个站点中最小的油价。

边界条件

\[
dp[i]=0,w[i]=0

\]

答案的表示

\[
dp[n]

\]

问题

在状态转移方程中,怎样在 \(O(1)\) 的时间复杂度下完成 \(pre\_min\) 函数呢?

这就涉及到了一个算法:

\(ST\) 表

在算法和数据结构中,ST表(Sparse Table)是一种用于解决区间查询问题的数据结构。它可以有效地回答各种形式的查询,例如最小值、最大值、区间和等。

简介

ST表的主要思想是通过预处理来加速区间查询。它使用倍增 DP 的思想将一个数组分割成多个子区间,并在每个子区间上计算出某种操作的结果。然后,根据这些预先计算好的结果,我们可以根据需要合并区间来回答各种查询。

具体的实现过程如下:

  1. 初始化ST表,ST表是一个二维数组。
  2. 将输入的原始数组填充到ST表的第一行。
  3. 使用递推关系填充ST表的其他行,直到得到完整的ST表。
  4. 根据查询的起始位置和区间长度,在ST表中找到对应区间的值,结合适当的操作得出最终结果。

查询操作

对于任何查询操作,我们可以使用以下步骤来回答:

  1. 计算出查询区间的长度len。

  2. 找到大于等于len的最大值j,使得2^j <= len。

  3. 使用预处理的结果和递推关系,在ST表中找到对应的值,并结合适当的操作得到查询结果。

这种方法的时间复杂度为O(1),因为我们只需进行几次常数级别的操作即可回答查询。

应用场景

ST表在解决各种区间查询问题时非常有用。以下是一些常见的应用场景:

  • 查询最小值/最大值:通过选择适当的查询操作,在O(1)的时间复杂度内回答每个查询。
  • 区间和查询:可以通过使用累积和来实现区间和查询。
  • 区间gcd查询:可以通过预处理和递推关系计算区间内的最大公约数。

总结

ST表是一种高效解决区间查询问题的数据结构。通过预先计算和递推关系,我们可以在O(1)的时间复杂度内回答各种形式的查询。它的实现相对简单且灵活,适用于多种应用场景。

模板

初始化(时间复杂度 \(O(\log_2n)\) )

for(int i=1;i<=n;i++) {
st[i][0]=a[i];
}
for(int j=1;(1<<j)<=n;j++) {
for(int i=1;i+(1<<j)-1<=n;i++) {
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}

查询(时间复杂度 \(O(1)\) )

l=1,r=i-1,len=log2(r-l+1);
pm=min(st[l][len],st[r-(1<<len)+1][len]);

解决问题

有了ST表,我们就可以在O(1)的时间复杂度中查询最值了,那我们程序的最终问题:TLE也解决了。程序整体时间复杂度为O(n),可以通过此题。

AC代码如下。

\(Accept\ Code\)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e5+5;
ll v[N],a[N],w[N],dp[N],st[N][20];
ll n,d,l,r,len,pm;
int main() {
cin>>n>>d;
for(int i=1;i<n;i++) {
cin>>v[i];
}
for(int i=1;i<=n;i++) {
cin>>a[i];
}
for(int i=1;i<=n;i++) {
st[i][0]=a[i];
}
for(int j=1;(1<<j)<=n;j++) {
for(int i=1;i+(1<<j)-1<=n;i++) {
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}
for(int i=2;i<=n;i++) {
l=1,r=i-1,len=log2(r-l+1);
pm=min(st[l][len],st[r-(1<<len)+1][len]);
dp[i]=dp[i-1]+ceil(1.0*(v[i-1]-w[i-1])/d)*pm;
w[i]=ceil(1.0*(v[i-1]-w[i-1])/d)*d-(v[i-1]-w[i-1]);
}
cout<<dp[n];
return 0;
}

【题解】P9749 [CSP-J 2023] 公路的更多相关文章

  1. CSP J/S 初赛总结

    CSP J/S 初赛总结 2021/9/19 19:29 用官方答案估计 J 涂卡的时候唯一的一支 2B 铅笔坏了,只能用笔芯一个个涂 选择 \(-6\ pts\) 判断 \(-3\ pts\) 回答 ...

  2. 2019 CSP J/S第2轮 视频与题解

    CSP入门组和提高组第二轮题解 转自网络

  3. 【游记】CSP J/S 2019 游记

    J 组 \(2:30\)开始, \(2:13\)还在酒店的我看了看手表...飞奔考场. T1 数字游戏 秒切. 下午某中学某大佬说可用线性基(%) T2 公交换乘 用单调队列思想,秒切. T3 纪念品 ...

  4. CSP J/S 2019受虐记

    一枚蒟蒻的游记~ 提高组DAY1 不是说每场考试都有一道签到题吗 那我tm读了三遍题硬是没找到一道水题是怎么回事(是我太弱了吗) 没办法,硬着头皮做T1 暴力写法...期望得分30pts 于是...在 ...

  5. 【题解】 [HNOI/AHOI2018]道路 (动态规划)

    懒得复制,戳我戳我 Solution: \(dp[i][j][k]\)以\(i\)为子树根节点,到根节点中有\(j\)条公路没修,\(k\)条铁路没修,存子树不便利和 \(dp[i][j][k]=mi ...

  6. 【codeforces】【比赛题解】#855 Codefest 17

    神秘比赛,以<哈利波特>为主题……有点难. C题我熬夜切终于是写出来了,可惜比赛结束了,气啊. 比赛链接:点我. [A]汤姆·里德尔的日记 题意: 哈利波特正在摧毁神秘人的分灵体(魂器). ...

  7. [游记]2020/CSP - S总结

    2020 / C S P − S 总 结 2020/CSP - S总结 2020/CSP−S总结 这年的 C S P CSP CSP考的不是很理想,本来稳进的 C S P − J CSP-J CSP− ...

  8. Atcoder 2159 連結 / Connectivity(并查集+map乱搞)

    問題文N 個の都市があり.K 本の道路と L 本の鉄道が都市の間に伸びています. i 番目の道路は pi 番目と qi 番目の都市を双方向に結び. i 番目の鉄道は ri 番目と si 番目の都市を双 ...

  9. 洛谷 P1373 小a和uim之大逃离 Label:dp 不会

    题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个 ...

  10. 【CodeForces 261B】Maxim and Restaurant(DP,期望)

    题目链接 第一种解法是$O(n^3*p)$的:f[i][j][k]表示前i个人进j个人长度为k有几种方案(排列固定为123..n时).$f[i][j][k]=f[i-1][j][k]+f[i-1][j ...

随机推荐

  1. vue Promise的使用

    一.Promise是什么? Promise是异步编程的一种解决方案. 二.那什么时候我们会来处理异步事件呢? 1. 一种很常见的场景应该就是网络请求了. 我们封装一个网络请求的函数,因为不能立即拿到结 ...

  2. 解决Xshell/Xftp提示“要继续使用此程序必须应用到最新的更新或者新版本”(临时规避和彻底解决方案)

    一.xshell与xftp登录时提示,但是更新却又每次都失败,无法登录 二. 临时规避方案:手动修改日期为1年前,问题解决软件可以打开,但是每次启动都要手动修改,甚是麻烦  三.彻底解决方案,修改xs ...

  3. loadrunner12的安装教程

    一.LR12安装包: 链接:https://pan.baidu.com/s/1UU304e-nP7qAL-fV8T39YQ 密码:jpln 二.LR12安装: 1.下载完成后点击解压

  4. Git | git branch 分支操作

    假设我们已经有了稳定的代码,现在我想整一些花活.比较安全的一个方式是,在新的分支上整活. 新建 vga 分支:git branch vga,然后切换到 vga 分支:git switch vga,或者 ...

  5. SV 数据类型

    system verilog可以用于设计也可以进行验证 语法规则 SV新数据类型 SV数据类型 bit - 0-255 byte - -127 - 128 # 快速进行sv文件仿真 VCS -R -s ...

  6. VUE字符串模板@click失效

    因为字符串模板不能被vue所渲染,所以这种方式行不通. 可采用组件的方式 父组件 <template> <div id="app"> <My v-fo ...

  7. Shell-循环-for-while

  8. 【wayn商城】本地开发指南

    这篇文章给大家带来我自己写的开源项目[wayn商城]的本地开发指南,帮助各位朋友在本地快速运行[wayn商城],避免踩坑,减少不必要的精力在软件下载安装上. waynboot-mall 是一套全部开源 ...

  9. [转帖]资料整理——Oracle版本历史(很全面)(Releases and versions of Oracle Database)

    资料来源: https://en.wikipedia.org/wiki/Oracle_Database Oracle Database Version Initial Release Version ...

  10. [转帖] TiDB 产品体系介绍

    https://www.modb.pro/db/521269#:~:text=%E4%BC%81%E4%B8%9A%E7%89%88%E5%92%8C%E7%A4%BE%E5%8C%BA%E7%89% ...