Codeforces 710C. Magic Odd Square n阶幻方
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both main diagonals are odd.
The only line contains odd integer n (1 ≤ n ≤ 49).
Print n lines with n integers. All the integers should be different and from 1 to n2. The sum in each row, column and both main diagonals should be odd.
1
1
3
2 1 4
3 5 7
6 9 8
题目连接:http://codeforces.com/problemset/problem/710/C
题意:n*n的矩阵内填入1~n*n使得行,列,对角线的和为奇数(n为奇数)。
思路:n阶幻方(行,列,对角线的和相等)也符合这种情况。
传送门:n阶幻方代码:
#include<iostream>
#include<cstdio>
using namespace std;
int x[][];
int main()
{
int n;
scanf("%d",&n);
int i=,j=n/,num=;
while(num<=n*n)
{
int ii=(i%n+n)%n;
int jj=(j%n+n)%n;
x[ii][jj]=num;
if(num%n==) i++;
else --i,j++;
num++;
}
for(i=;i<n;i++)
{
for(j=;j<n;j++)
cout<<x[i][j]<<" ";
cout<<endl;
}
return ;
}
n为奇数
Codeforces 710C. Magic Odd Square n阶幻方的更多相关文章
- CodeForces 710C Magic Odd Square (n阶奇幻方)
题意:给它定一个n,让你输出一个n*n的矩阵,使得整个矩阵,每行,每列,对角线和都是奇数. 析:这个题可以用n阶奇幻方来解决,当然也可以不用,如果不懂,请看:http://www.cnblogs.co ...
- CodeForces - 710C Magic Odd Square(奇数和幻方构造)
Magic Odd Square Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, c ...
- codeforces 710C Magic Odd Square(构造或者n阶幻方)
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both ma ...
- 【模拟】Codeforces 710C Magic Odd Square
题目链接: http://codeforces.com/problemset/problem/710/C 题目大意: 构造一个N*N的幻方.任意可行解. 幻方就是每一行,每一列,两条对角线的和都相等. ...
- CodeForces 710C Magic Odd Square
构造. 先只考虑用$0$和$1$构造矩阵. $n=1$,$\left[ 1 \right]$. $n=3$,(在$n=1$的基础上,最外一圈依次标上$0$,$1$,$0$,$1$......) $\l ...
- codeforces 710C C. Magic Odd Square(构造)
题目链接: C. Magic Odd Square Find an n × n matrix with different numbers from 1 to n2, so the sum in ea ...
- [Educational Codeforces Round 16]C. Magic Odd Square
[Educational Codeforces Round 16]C. Magic Odd Square 试题描述 Find an n × n matrix with different number ...
- 689D Magic Odd Square 奇数幻方
1 奇数阶幻方构造法 (1) 将1放在第一行中间一列; (2) 从2开始直到n×n止各数依次按下列规则存放:按 45°方向行走,向右上,即每一个数存放的行比前一个数的行数减1,列数加1 (3) 如果行 ...
- Magic Odd Square (思维+构造)
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both ma ...
随机推荐
- APIView (DRF的视图)
APIView和View的区别 -- APIView继承了View -- APIView 重写了as_view以及 dispatch方法 -- 在dispatch里重新封装了request -- r ...
- Kafka 基本原理
Kafka 基本原理 来源:阿凡卢 , www.cnblogs.com/luxiaoxun/p/5492646.html 简介 Apache Kafka是分布式发布-订阅消息系统.它最初由Link ...
- 转载 深入理解java类加载器
1 基本信息 每个开发人员对java.lang.ClassNotFoundExcetpion这个异常肯定都不陌生,这背后就涉及到了java技术体系中的类加载.Java的类加载机制是技术体系中比较核心的 ...
- python入门-函数(二)
1 函数传递参数 def greet_users(names): """向列表中的每个用户都发处问候""" for name in name ...
- Zabbix监控系统进程
参考网站: https://www.linuxidc.com/Linux/2016-11/137649.htm
- spring boot 整合 (全)
参考: https://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples
- HTML5 Canvas ( 图形变换, 升级版的星空 ) translate, rotate, scale
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- HTML5 Canvas ( 画一个五角星 ) lineJoin miterLimit
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 可视化库-seaborn-回归分析绘图(第五天)
1. sns.regplot() 和 sns.lmplot() 绘制回归曲线 import numpy as np import pandas as pd from scipy import stat ...
- Procedure-Function mysql
1.基本用法 drop PROCEDURE if EXISTS sp1; -- 如果存在sp1存储过程则删除掉 create PROCEDURE sp1() SELECT 1; --创建最简单的存储过 ...