洛谷题目链接:[CQOI2011]放棋子

题目描述

在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同

颜色的棋子不能在同一行或者同一列。有多少祌方法?例如,n=m=3,有两个白棋子和一

个灰棋子,下面左边两祌方法都是合法的,但右边两祌都是非法的。

输入输出格式

输入格式:

输入第一行为两个整数n, m, c,即行数、列数和棋子的颜色数。第二行包含c个正整数,即每个颜色的棋子数。所有颜色的棋子总数保证不超过nm。

输出格式:

输出仅一行,即方案总数除以 1,000,000,009的余数。

输入输出样例

输入样例#1:

4 2 2

3 1

输出样例#1:

8

说明

N,M<=30 C<=10 总棋子数<=250

题解: 一道\(DP\)的好题.

定义状态\(f[i][j][k]\)表示用前\(k\)种颜色占领了任意\(i\)行\(j\)列.

设\(a[k]\)表示第\(k\)种颜色的棋子的个数.

转移很显然是$$f[i][j][k]=\sum_{l=0}{i-1}\sum_{r=0}{j-1}f[l][r][k-1]C_{n-l}{i-l}*C_{m-r}{j-r}用a[k]个棋子占领任意i-l行j-r列的方案数$$

那么我们再定义状态\(g[i][j][k]\)表示用\(k\)个相同颜色的棋子占领任意\(i\)行\(j\)列的方案数,直接算不太好算,我们可以考虑容斥:$$g[i][j][k]=C_{ij}k-\sum_{l=0}{i}\sum_{r=0}{j}g[l][r][k]*C_{i}{l}C_{j}^{r},(l \not= i \ ||\ r \not= j)$$

预处理了\(g\)数组,就可以对\(f\)数组转移了:$$f[i][j][k]=\sum_{l=0}{i-1}\sum_{r=0}{j-1}f[l][r][k-1]C_{n-l}{i-l}*C_{m-r}{j-r}g[i-l][j-r][a[k]]$$

因为不一定要放满整个棋盘,所以$$ans=\sum_{l=1}n\sum_{r=1}mf[i][j][c]$$

其实还可以用滚动数组滚掉\(g\)数组的最后一维.

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int N = 30+5;
const int COL = 10+5;
const int K = 250+5;
const int mod = 1e9+9; int n, m, C, a[N], c[1000][1000], ans = 0;
int f[N][N][COL], g[N][N][1000];
// f : k types of col occupied any i lines, j rows
// g : same type k chess piece occupied any i lines, j rows int main(){
cin >> n >> m >> C;
for(int i = 1; i <= n; i++) cin >> a[i];
f[0][0][0] = c[0][0] = 1;
for(int i = 1; i <= 900; i++){
c[i][0] = 1;
for(int j = 1; j <= i; j++) c[i][j] = (c[i-1][j]+c[i-1][j-1])%mod;
}
for(int k = 1; k <= C; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++){
if(a[k] > i*j) continue; int res = 0;
g[i][j][a[k]] = c[i*j][a[k]];
for(int l = 1; l <= i; l++)
for(int r = 1; r <= j; r++)
if(l < i || r < j) (res += 1ll*c[i][l]*c[j][r]%mod*g[l][r][a[k]]%mod) %= mod;
g[i][j][a[k]] = (g[i][j][a[k]]-res+mod)%mod;
}
for(int k = 1; k <= C; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
for(int l = 0; l < i; l++)
for(int r = 0; r < j; r++)
(f[i][j][k] += 1ll*c[n-l][i-l]*c[m-r][j-r]%mod*g[i-l][j-r][a[k]]%mod*f[l][r][k-1]%mod) %= mod;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) (ans += f[i][j][C]) %= mod;
cout << ans << endl;
return 0;
}

[洛谷P3158] [CQOI2011]放棋子的更多相关文章

  1. 洛谷P3158 [CQOI2011]放棋子 组合数学+DP

    题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...

  2. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  3. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  4. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  5. 题解 P3158 [CQOI2011]放棋子

    题解 本题是一个 \(DP\) 加 容斥,容斥的式子很好推,重点是如何想到和如何推出 \(DP\) 部分的式子. 因为不同种颜色的棋子不能放在同一行或同一列,所以不同种的棋子是相对独立的. 据此,我们 ...

  6. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

  7. P3158 [CQOI2011]放棋子

    传送门 题解(因为公式太多懒得自己抄写一遍了--) //minamoto #include<bits/stdc++.h> #define ll long long #define R re ...

  8. BZOJ 3294: [Cqoi2011]放棋子

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 628  Solved: 238[Submit][Status] ...

  9. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

随机推荐

  1. 1003 我要通过!| PAT (Basic Level) Practice

    1003 我要通过! (20 分) "答案正确"是自动判题系统给出的最令人欢喜的回复.本题属于 PAT 的"答案正确"大派送 -- 只要读入的字符串满足下列条件 ...

  2. 结对项目-四则运算出题程序(GUI版)

    目录: 一.致搭档(含项目地址) 二.PSP(planning) 三.结对编程中对接口的设计 四.计算模块接口的设计与实现过程 五.计算模块接口部分的性能改进 六.计算模块部分单元测试展示 七.计算模 ...

  3. JS实现前端将数据导出excel

    点击此跳到原文,原文有效果动图. 方法一 将table标签,包括tr.td等对json数据进行拼接,将table输出到表格上实现,这种方法的弊端在于输出的是伪excel,虽说生成xls为后缀的文件,但 ...

  4. 软工之404 Note Found队选题报告

    目录 NABCD分析引用 N(Need,需求): A(Approach,做法): B(Benefit,好处): C(Competitors,竞争): D(Delivery,交付): 初期 中期 个人贡 ...

  5. synchronized、锁、多线程同步的原理是咋样

    先综述个结论: 一般说的synchronized用来做多线程同步功能,其实synchronized只是提供多线程互斥,而对象的wait()和notify()方法才提供线程的同步功能. 一般说synch ...

  6. 微信小程序 功能函数picker-view的弹出模态

    <view class="list"> <form bindsubmit="formSubmit"> <view class=&q ...

  7. NodeJs 遍历文件夹内容 上传到服务器.并输出上传记录文件

    var path = require('path'); var glob = require('glob') var fs = require('fs'); var Promise = require ...

  8. 在sql server ide里数据修改数据

    在sql server 的客户端工具ssms里,只有在工具里打开后直接修改. 除了用这种方法外,还有其它方法可以改吗?比如像pl/sql里的for update sql server的客户端功能比较差 ...

  9. POJ2699_The Maximum Number of Strong Kings

    这题目,,,真是...诶.坑了好久. 给一个有向图.U->V表示U可以打败V并得一分. 如果一个人的得分最高,或者他打败所有比自己得分高的人,那么此人就是king. 现在给出每个人的得分,求最多 ...

  10. Java应用中使用ShutdownHook友好地清理现场

    在线上Java程序中经常遇到进程程挂掉,一些状态没有正确的保存下来,这时候就需要在JVM关掉的时候执行一些清理现场的代码.Java中得ShutdownHook提供了比较好的方案. JDK在1.3之后提 ...