混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)
拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是
1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介
质自激波动的非线性常微分方程组:
dot{x} = y (z - 1 + x^2) + \gamma x
dot{y} = x (3z + 1 - x^2) + \gamma y
dot{z} = -2z (\alpha + xy)
其中 α, γ 是控制系统的参数.
Danca and Chen指出由于拉比诺维奇-法布里康特方程包含平方项,
因此比较难以分析,即便选择的参数相同,但由于求解微分方程
组的步骤的不同也会导致不同的吸引子。
参数值:α=1.1,γ=0.803..0.917,t=0...130
初始条件:x(0)=-1,y(0)=0,z(0)=0.5
在t<20时,系统表现为自激振动,当t>20,系统进入馄饨态。
相关软件:混沌数学及其软件模拟
相关代码:
class RabinovichFabrikantEquation : public DifferentialEquation
{
public:
RabinovichFabrikantEquation()
{
m_StartX = -1.0f;
m_StartY = 0.0f;
m_StartZ = 0.5f; m_ParamA = 1.1f;
m_ParamB = 0.87f; m_StepT = 0.002f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = y*(z - + x*x) + m_ParamB*x;
dY = x*(*z + - x*x) + m_ParamB*y;
dZ = -*z*(m_ParamA + x*y);
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
};
相关截图:




混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)的更多相关文章
- 混沌数学之Duffing(杜芬)振子
杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示 杜芬方程列式如下: 其中 γ控制阻尼度 α控制韧度 β控制动力的非线性度 δ驱动力的振幅 ω驱动力的圆频 ...
- 混沌数学之Chua's circuit(蔡氏电路)
蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...
- 混沌数学之Lorenz(洛伦茨)吸引子
洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名. 洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称. ...
- 混沌数学之logistic模型
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...
- 混沌数学之Henon吸引子
Henon吸引子是混沌与分形的著名例子. 相关软件:混沌数学及其软件模拟相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.ht ...
- 混沌数学之Rössler(若斯叻)吸引子
若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...
- 混沌数学之ASin模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...
- 混沌数学之Kent模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...
- 混沌数学之Feigenbaum模型
1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...
随机推荐
- ubuntu 14.04 Bob 安装
1. 附件依赖项安装$ sudo add-apt-repository ppa:biometrics/bob $ sudo apt-get update $ sudo apt-get install ...
- Android中selector背景选择器
http://blog.csdn.net/forsta/article/details/26148403 http://blog.csdn.net/wswqiang/article/details/6 ...
- 「HNOI2018」游戏
「HNOI2018」游戏 解题思路 首先没有锁上的门可以缩点缩掉,然后对于一扇锁上的门,如果钥匙在左边,那么右边就永远不可能到达左边,同理如果钥匙在右边,左边就永远不可能到达右边. 然后考虑一个暴力的 ...
- 【DFS好题】BZOJ1999- [Noip2007]Core树网的核(数据加强版)
NOIP的数据好水,一开始有好几个错结果NOIP数据就水过了?? [题目大意] 求无根树的直径上一段不超过S长的链,使得偏心距最小.具体概念见原题. [思路] 首先明确几个性质: (1)对于树中的任意 ...
- Sublime Text2 默认语言(windows/unix)设置,Sublime插件大全
Sublime默认系统语言设置 Sublime Text 2默认使用的就是UTF8,这个UTF8模式使用的是不带BOM的,如果要修改这个配置,到Perference->Settings-User ...
- voith项目配置服务程序
项目需求: 1.程序可以最小化到任务栏 2.tpms标签和限速标签同时只能选择一个,并且要通过button确定修改 3.在程序中需要显示SequenceScanner1.0服务的运行状态 4.能够打开 ...
- bzoj 3473 后缀自动机多字符串的子串处理方法
后缀自动机处理多字符串字串相关问题. 首先,和后缀数组一样,用分割符连接各字符串,然后建一个后缀自动机. 我们定义一个节点代表的字符串为它原本代表的所有串去除包含分割符后的串.每个节点代表的字符串的数 ...
- Codeforces Round #297 (Div. 2)D. Arthur and Walls 暴力搜索
Codeforces Round #297 (Div. 2)D. Arthur and Walls Time Limit: 2 Sec Memory Limit: 512 MBSubmit: xxx ...
- Codeforces Round #295 (Div. 2)B - Two Buttons BFS
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- ACdream 速攻组~
1007 a + b /*这题就是一个快速幂,但是十分猥琐的是,模是1e10 + 7,不是1e9 + 7,这就产生了一个爆long long的问题.所以要对快速幂中的乘法操作进行一下改造.请教了BIT ...