拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是
1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介
质自激波动的非线性常微分方程组:
dot{x} = y (z - 1 + x^2) + \gamma x
dot{y} = x (3z + 1 - x^2) + \gamma y
dot{z} = -2z (\alpha + xy)
其中 α, γ 是控制系统的参数.

Danca and Chen指出由于拉比诺维奇-法布里康特方程包含平方项,
因此比较难以分析,即便选择的参数相同,但由于求解微分方程
组的步骤的不同也会导致不同的吸引子。

参数值:α=1.1,γ=0.803..0.917,t=0...130
初始条件:x(0)=-1,y(0)=0,z(0)=0.5
在t<20时,系统表现为自激振动,当t>20,系统进入馄饨态。

相关软件:混沌数学及其软件模拟

相关代码:

class RabinovichFabrikantEquation : public DifferentialEquation
{
public:
RabinovichFabrikantEquation()
{
m_StartX = -1.0f;
m_StartY = 0.0f;
m_StartZ = 0.5f; m_ParamA = 1.1f;
m_ParamB = 0.87f; m_StepT = 0.002f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = y*(z - + x*x) + m_ParamB*x;
dY = x*(*z + - x*x) + m_ParamB*y;
dZ = -*z*(m_ParamA + x*y);
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
};

相关截图:

混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)的更多相关文章

  1. 混沌数学之Duffing(杜芬)振子

    杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示 杜芬方程列式如下: 其中 γ控制阻尼度 α控制韧度 β控制动力的非线性度 δ驱动力的振幅 ω驱动力的圆频 ...

  2. 混沌数学之Chua's circuit(蔡氏电路)

    蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...

  3. 混沌数学之Lorenz(洛伦茨)吸引子

    洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名. 洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称. ...

  4. 混沌数学之logistic模型

    logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...

  5. 混沌数学之Henon吸引子

    Henon吸引子是混沌与分形的著名例子. 相关软件:混沌数学及其软件模拟相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.ht ...

  6. 混沌数学之Rössler(若斯叻)吸引子

    若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...

  7. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

  8. 混沌数学之Kent模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...

  9. 混沌数学之Feigenbaum模型

          1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...

随机推荐

  1. Ionic Js十六:滚动条

    ion-scroll ion-scroll 用于创建一个可滚动的容器. <ion-scroll [delegate-handle=""] [direction="& ...

  2. 2011年入侵 Kernel.org 的黑客被捕 面临10年监禁

    2011年中旬,Linux内核官网kernel.org遭到黑客入侵,攻击者植入了rootkit Phalanx,并在服务器上设置了SSH后门,kernel.org为此关闭了三周多时间.官方表示将会公开 ...

  3. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

  4. JDK源码分析(二)——LinkedList

    目录 LinkedList LinkedList继承结构 LinkedList内部类Node LinkedList成员属性 LinkedList构造方法 重要方法 Deque方法的实现 遍历 总结 L ...

  5. git 相关资料应当查看廖雪峰所写的网站

    廖雪峰关于git的网站 https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/0013 ...

  6. zip函数实际应用

    一个需求,把两个列表要同时用for循环贴到模板上,用zip在后端组成  元祖组成的列表  这样在模板就可以用.0   .1的方式,类似python中 x[0]   x[1] 显示出来. html显示: ...

  7. Javascript:window.close()不起作用?

    一般的窗口关闭的JS如下写法: window.close() 但是呢,chrome,firefox等中有时候会不起作用. 改为下面的写法: window.open("about:blank& ...

  8. luoguP3871 [TJOI2010]中位数

    题目链接 luoguP3871 [TJOI2010]中位数 题解 平衡树 代码 #include<vector> #include<cstdio> #include<cs ...

  9. 【DFS好题】BZOJ1999- [Noip2007]Core树网的核(数据加强版)

    NOIP的数据好水,一开始有好几个错结果NOIP数据就水过了?? [题目大意] 求无根树的直径上一段不超过S长的链,使得偏心距最小.具体概念见原题. [思路] 首先明确几个性质: (1)对于树中的任意 ...

  10. 安装第三方jar包的两种方式

    由于部分第三放jar包没有放到maven中央仓库,而项目中又依赖了这些jar包,那么如何安装?我实践了两种,特做记录. 一.安装到 nexus 私有库: 在 3rd party 仓库下有个 Artif ...