Prelude

快THUWC了,所以补一下以前的题。

真的是一道神题啊,网上的题解没几篇,而且还都看不懂,我做了一天才做出来。

传送到LOJ:(>人<;)


Solution

直接切入正题。

我们考虑区间dp,第一件事是离散化。

然后用\(g(i,j)\)表示消除完闭区间\([i,j]\)的最小费用。

然后呢?怎么转移?exm???

这时候会有一个非常自然的想法。

计算\(g(i,j)\)的时候,我们枚举两个数\(l,r\),然后保留下值在闭区间\([l,r]\)之内的所有数,先消除掉其他的数字,就只剩\([l,r]\)之内的数字了,再一次性消除掉她们。

时间复杂度\(O(n^5)\),但是显然是错的。

错在哪里呢?大概是错在下面这种情况,我懒得构造具体的反例了。

对于一组数字\(abcabca\),我们可以先消除掉中间的\(a\),再消除掉\(bcbc\),最后再消除掉\(aa\),在我们的dp里面似乎并没有考虑到这种情况。

因为\(aa\)是最后消除掉的,因此如果我们选择保留\(a\)的话,会保留下来所有的\(a\)。

我们太仁慈了,保留下来了\([l,r]\)之间的所有的数字,其实不一定要保留所有数字。

怎么办呢?

脑洞大开!

我们用\(f(i, j, l, r)\)表示,消除完在闭区间\([i,j]\)之内的,除了值在\([l,r]\)之间的所有数字。

注意,在\([l,r]\)之间的数字,可以消除,也可以不消除。

然后显然有这个东西:

$\Large g(i, j) = \min f(i, j, l, r)$
实际上就是枚举$l,r$嘛。
然后我们考虑$f(i, j, l, r)$如何转移。
当闭区间$[i,j]$内元素全部在$[l,r]$之间的时候,显然$f(i, j, l, r)=0$。
当闭区间$[i,j]$内元素全部不在$[l,r]$之间的时候,显然$f(i, j, l, r)=g(i, j)$。
$f(i, j, l, r)=g(i, j)$似乎构成了循环依赖?
那么,我们枚举$l,r$的时候,必须保证区间$[i,j]$内存在至少一个数字在$[l,r]$内,这样就不会有循环依赖了。
解决了$f(i, j, l, r)$的边界问题,接下来看如何转移。
像普通的区间dp一样,我们枚举区间的分裂点$k$,然后把区间$[i,j]$分裂成$[i,k]$和$[k+1,j]$两部分,递归做下去。
有式子:
$\Large f(i, j, l, r) = \min f(i, k, l, r) + f(k+1, j, l, r)$
感受一下,感觉似乎是能处理各种情况的?
但是实际上和刚刚的做法没有任何区别。
因为对于状态$f(i, j, l, r)$,我们仍然保留了$[l,r]$之间的所有数字,仍然是那么的仁慈。
我们需要加一种暴力斩掉所有数字的情况。
有式子:
$\Large f(i, j, l, r) = \min g(i, k) + f(k+1, j, l, r)$
仔细感受一下,这两个$f(i, j, l, r)$的转移式结合起来之后,就可以处理掉所有情况了!
时间复杂度仍然是$O(n^5)$。
实现采用记忆化搜索,效果棒棒哒~
真是一道神题啊。。。


Code

#include <cstring>
#include <algorithm>
#include <cstdio>
#include <iostream> using namespace std;
const int N = 52;
const int W = 1010;
const int INF = 0x3f3f3f3f;
int _w; int bmin( int &a, int b ) {
return a = b < a ? b : a;
} int n, a, b, w[N];
int vis[W], num[N], m;
int f[N][N][N][N], g[N][N];
int F( int, int, int, int );
int G( int, int ); void discrete() {
for( int i = 1; i <= n; ++i )
vis[w[i]] = 1;
m = 1;
for( int i = 1; i < W; ++i )
if( vis[i] )
vis[i] = m, num[m++] = i;
--m;
for( int i = 1; i <= n; ++i )
w[i] = vis[w[i]];
} bool contain( int i, int j, int l, int r ) {
for( int p = i; p <= j; ++p )
if( w[p] >= l && w[p] <= r )
return true;
return false;
} bool all( int i, int j, int l, int r ) {
for( int p = i; p <= j; ++p )
if( w[p] < l || w[p] > r )
return false;
return true;
} int F( int i, int j, int l, int r ) {
int &now = f[i][j][l][r];
if( now != -1 ) return now;
if( all(i, j, l, r) ) return now = 0;
if( !contain(i, j, l, r) ) return now = G(i, j);
now = INF;
for( int k = i; k < j; ++k ) {
bmin( now, F(i, k, l, r) + F(k+1, j, l, r) );
bmin( now, G(i, k) + F(k+1, j, l, r) );
}
// printf( "f[%d][%d][%d][%d] = %d\n", i, j, l, r, now );
return now;
} int G( int i, int j ) {
int &now = g[i][j];
if( now != -1 ) return now;
now = INF;
for( int l = 1; l <= m; ++l )
for( int r = l; r <= m; ++r )
if( contain(i, j, l, r) ) {
int u = num[l], v = num[r];
bmin( now, F(i, j, l, r) + (v-u)*(v-u)*b + a );
}
// printf( "g[%d][%d] = %d\n", i, j, now );
return now;
} int main() {
cin >> n >> a >> b;
for( int i = 1; i <= n; ++i )
cin >> w[i];
discrete();
memset(f, -1, sizeof f);
memset(g, -1, sizeof g);
printf( "%d\n", G(1, n) );
return 0;
}

【题解】【THUSC 2016】成绩单 LOJ 2292 区间dp的更多相关文章

  1. loj 1031(区间dp+记忆化搜索)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1031 思路:dp[i][j]表示从区间i-j中能取得的最大值,然后就是枚举分割点了. ...

  2. BZOJ 1996: [Hnoi2010]chorus 合唱队(区间dp)

    题目: https://www.lydsy.com/JudgeOnline/problem.php?id=1996 题解: 这题刚拿到手的时候一脸懵逼qwq,经过思考与分析(看题解),发现是一道区间d ...

  3. 「USACO16OPEN」「LuoguP3146」248(区间dp

    题目描述 Bessie likes downloading games to play on her cell phone, even though she doesfind the small to ...

  4. SPOJ MIXTURES 区间dp

    Harry Potter has n mixtures in front of him, arranged in a row. Each mixture has one of 100 differen ...

  5. UVA1630 Folding 区间DP

    Folding Description   Bill is trying to compactly represent sequences of capital alphabetic characte ...

  6. LOJ 2292 「THUSC 2016」成绩单——区间DP

    题目:https://loj.ac/problem/2292 直接 DP 很难做,主要是有那种 “一个区间内部有很多个别的区间” 的情况. 自己想了一番枚举 max-min 的最大限制,然后在该基础上 ...

  7. loj 2292「THUSC 2016」成绩单

    loj 看着就很区间dp,所以考虑求\(f_{i,j}\)表示区间\([i,j]\)的答案.注意到贡献答案的方式是每次选一个连续段,拿走后剩下的段拼起来继续段,所以转移就考虑从最后一次选的方法转移过来 ...

  8. 2016 ACM/ICPC Asia Regional Shenyang Online 1009/HDU 5900 区间dp

    QSC and Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  9. 【bzoj4897】[Thu Summer Camp2016]成绩单 区间dp

    题目描述 给你一个数列,每次你可以选择连续的一段,付出 $a+b\times 极差^2$ 的代价将其删去,剩余部分拼到一起成为新的数列继续进行此操作.求将原序列全部删去需要的最小总代价是多少. 输入 ...

随机推荐

  1. webpack开发和生产两个环境的配置详解

    一开始在接触webpack 的时候,简直痛不欲生,现在回头看,做个注释,当然参考了很多文章.这是一个关于vue 开发的webpack 架构会列举出来webpack 系列教程Webpack——令人困惑的 ...

  2. Vue 入门之数据绑定

    什么是双向绑定? Vue 框架很核心的功能就是双向的数据绑定. 双向是指:HTML 标签数据 绑定到 Vue 对象,另外反方向数据也是绑定的.通俗点说就是,Vue 对象的改变会直接影响到 HTML 的 ...

  3. Struts2框架学习

    Struts功能详解——ActionMapping对象 ActionMapping描述了struts中用户请求路径和Action的映射关系,在struts中每个ActionMapping都是通过pat ...

  4. 优化Hibernate所鼓励的7大措施:

    优化Hibernate所鼓励的7大措施: 1.尽量使用many-to-one,避免使用单项one-to-many 2.灵活使用单向one-to-many 3.不用一对一,使用多对一代替一对一 4.配置 ...

  5. Myeclipse(2014)项目的注释乱码

    (之前都是在项目右键 propertits----resource---text file encoding 里面改成UTF-8的 下面是以后都直接换) window->preference-& ...

  6. mvc 路由配置-学习2

    public class RouteConfig {    public static void RegisterRoutes(RouteCollection routes)    {       r ...

  7. 今年暑假要AC

    今年暑假要AC 在这个大学的第一个的暑假,谁不想回去high呢~ 但是,这是不行的,还没有AC,你能回去吗?高三那年的暑假怎么玩的,现在补回来吧...有规模有计划有氛围的学习就是:优点多效率好激情足~ ...

  8. Alpha冲刺阶段博客汇总

    第一篇(冲刺前安排):http://www.cnblogs.com/Aragaki-Yui/p/8893752.html 第二篇(冲刺第一天):http://www.cnblogs.com/Araga ...

  9. 0603团队变化+sprint第二个冲刺

    开始一个新的冲刺: 起止:2016.6.1~2016.6.14 按照以下过程进行 ProductBacklog:继续向下细化 Sprint 计划会议:确定此次冲刺要完成的目标 Sprint Backl ...

  10. 『编程题全队』Alpha 阶段冲刺博客Day2

    1.每日站立式会议 1.会议照片 2.昨天已完成的工作统计 孙志威:   确定了本阶段的团队目标   确定了个人所分配的任务(主要为客户端GUI模块) 孙慧君:    确定了自己的任务,并着手开始环境 ...