卧槽草草

来源于其它博客:

貌似我只知道group by key带来的倾斜

hive在跑数据时经常会出现数据倾斜的情况,使的作业经常reduce完成在99%后一直卡住,最后的1%花了几个小时都没跑完,这种情况就很可能是数据倾斜的原因,解决方法要根据具体情况来选择具体的方案

1、join的key值发生倾斜,key值包含很多空值或是异常值

这种情况可以对异常值赋一个随机值来分散key

如:

select userid,name 

from user_info a

join(

select case when userid is null then cast(rand(47)*100000 as int)

else userid

from user_read_log

) b on a.userid = b.userid

通过rand函数将为null的值分散到不同的值上,在key值比较就能解决数据倾斜的问题

注:对于异常值如果不需要的话,最好是提前过滤掉,这样计算量可以大大减少

2、当key值都是有效值时,解决办法为设置以下几个参数

set hive.exec.reducers.bytes.per.reducer = 1000000000

也就是每个节点的reduce 默认是处理1G大小的数据,如果你的join 操作也产生了数据倾斜,那么你可以在hive 中设定

set hive.optimize.skewjoin = true; 
set hive.skewjoin.key = skew_key_threshold (default = 100000)

hive 在运行的时候没有办法判断哪个key 会产生多大的倾斜,所以使用这个参数控制倾斜的阈值,如果超过这个值,新的值会发送给那些还没有达到的reduce, 一般可以设置成你

(处理的总记录数/reduce个数)的2-4倍都可以接受.

倾斜是经常会存在的,一般select 的层数超过2层,翻译成执行计划多于3个以上的mapreduce job 都很容易产生倾斜,建议每次运行比较复杂的sql 之前都可以设一下这个参数. 如果你不知道设置多少,可以就按官方默认的1个reduce 只处理1G 的算法,那么  skew_key_threshold  = 1G/平均行长. 或者默认直接设成250000000 (差不多算平均行长4个字节)

3、reduce数太少

set mapred.reduce.tasks=800;

默认是先设置hive.exec.reducers.bytes.per.reducer这个参数,设置了后hive会自动计算reduce的个数,因此两个参数一般不同时使用

4、对于group by 产生倾斜的问题

set hive.map.aggr=true (开启map端combiner); //在Map端做combiner,假如map各条数据基本上不一样, 聚合没什么意义,做combiner反而画蛇添足,hive里也考虑的比较周到通过参数hive.groupby.mapaggr.checkinterval = 100000 (默认)

hive.map.aggr.hash.min.reduction=0.5(默认)

两个参数的意思是:预先取100000条数据聚合,如果聚合后的条数/100000>0.5,则不再聚合

set hive.groupby.skewindata=true;//决定 group by 操作是否支持倾斜的数据。注意:只能对单个字段聚合.控制生成两个MR Job,第一个MR Job Map的输出结果随机分配到reduce做次预汇总,减少某些key值条数过多某些key条数过小造成的数据倾斜问题

5、小表与大表关联

此时,可以通过mapjoin来优化,

set hive.auto.convert.join true ; //将小表刷入内存中  

set hive.mapjoin.smalltable.filesize = 2500000 ;//刷入内存表的大小(字节)  

 

 

select
pag_id,
tag_name,
substr(gmt_create,1,10) as pt,
row_number() over
(
partition by pag_id order by substr(gmt_create,1,10) desc
) as rownumbers
from dj_dw.ods_dm_pas_member_ds_result
where year='2016'

hive数据倾斜问题的更多相关文章

  1. 实战 | Hive 数据倾斜问题定位排查及解决

    Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...

  2. Hive数据倾斜解决方法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  3. Hive数据倾斜总结

    倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务 ...

  4. Hive数据倾斜

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  5. Hive数据倾斜解决办法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  6. hive数据倾斜原因以及解决办法

    何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...

  7. Hive 数据倾斜原因及解决方法(转)

    在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...

  8. Hive数据倾斜和解决办法

    转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中   ...

  9. hive数据倾斜的解决办法

    数据倾斜是进行大数据计算时常见的问题.主要分为map端倾斜和reduce端倾斜,map端倾斜主要是因为输入文件大小不均匀导致,reduce端主要是partition不均匀导致. 在hive中遇到数据倾 ...

随机推荐

  1. 【BZOJ4869】【SHOI2017】相逢是问候

    Description BZOJ传送门 Solution 这题涉及到指数嵌套堆叠,可能可以用欧拉函数解决. 试想一个数\(a_i\)经过\(k\)次操作后会变成什么? \[ k个c\;\; \begi ...

  2. Python OS模块操作文件和目录

    #-*-coding:utf-8-*- import os import shutil ###############OS模块############## #获得当前python脚本的工作目录 os. ...

  3. wget递归下载整站

    由于线上跑的系统还有CentOS5.4.6.4.6.5.6.5.6.6.6.8,而各镜像站维护的最早的版本已经是6.9,所以需要爬archive站点的rpm包来自建yum仓库. # wget -r - ...

  4. shell 中的操作符

    1.算术操作符 2.关系操作符 3.布尔操作符 4.字符串操作符 5.文件相关操作符 算术操作符 bash shell 没有提供任何机制来执行简单的算术运算,不过我们可以借助于一些其他程序,如 exp ...

  5. shell 变量定义使用

    shell 中变量的几种类型: 1.局部变量:只在当前 shell 可用的变量, 2.环境变量:当前 shell 的子进程也可用的变量 3.shell 变量:一些由 shell 设置的特殊变量,如:$ ...

  6. R读取excel文件

    2017.09.05 我一个下午的成果啊啊啊啊,看看失败 不禁感叹一声,失败的路真是多啊!!!! 一.安装xlsx包 下面具体讲一讲怎么弄的(太笨了,所以学得慢,需要一步一步的来) 用R读取excel ...

  7. 2016/1/2 Python中的多线程(1):线程初探

    ---恢复内容开始--- 新年第一篇,继续Python. 先来简单介绍线程和进程. 计算机刚开始发展的时候,程序都是从头到尾独占式地使用所有的内存和硬件资源,每个计算机只能同时跑一个程序.后来引进了一 ...

  8. 机器学习算法整理(五)决策树_随机森林——鹃尾花实例 Python实现

    以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ In [8]: %matplotlib inline import pandas a ...

  9. 容器启动报iptables错误

    # systemctl stop docker # iptables -t nat -F # ifconfig docker0 down # brctl delbr docker0   # 命令由br ...

  10. PHP官方文档之————secure.php.net.while

    while 语句的含意很简单,它告诉 PHP 只要 while 表达式的值为 TRUE 就重复执行嵌套中的循环语句.表达式的值在每次开始循环时检查,所以即使这个值在循环语句中改变了,语句也不会停止执行 ...