BZOJ 2749 HAOI 2012 外星人 数论 欧拉函数
题意:
给出一个数,给出的形式是其分解质因数后,对应的质因数pi及其次数qi,问对这个数不停求phi,直至这个数变成1,需要多少次。(多组数据)
范围:pi <= 1e5,qi <= 1e9
分析:
当x > 2时,phi[x]均为偶数。而每次求phi之后,2的次数只会减一,然后其他的质因数分解出多个2,因此数x分解得到的2的个数就是答案了。
如果一开始不存在质因数2,那么需要多进行一次phi操作。
程序:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream> using namespace std; #define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define mset(a, b) memset(a, b, sizeof(a))
const int maxn = 1e5;
typedef long long LL;
int prime[maxn+], pcnt, g[maxn+];
bool isNotPrime[maxn+]; void prepare()
{
pcnt = , mset(isNotPrime, );
REP(i, , maxn)
{
if (!isNotPrime[i])
{
prime[++pcnt] = i;
g[i] = (i == ) ? : g[i-];
}
REP(j, , pcnt)
{
if (i*prime[j] > maxn) break ;
isNotPrime[i*prime[j]] = true;
g[i*prime[j]] = g[i]+g[prime[j]];
if (i%prime[j] == ) break ;
}
}
} int main()
{
prepare();
int T;
scanf("%d", &T);
while (T --)
{
int m;
scanf("%d", &m);
LL ans = ; int flag = ;
while (m --)
{
int p, q;
scanf("%d %d", &p, &q);
flag |= (p == );
ans += (LL)g[p]*q;
}
printf("%lld\n", ans+(!flag));
}
return ;
}
BZOJ 2749 HAOI 2012 外星人 数论 欧拉函数的更多相关文章
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- bzoj 2818 GCD 数论 欧拉函数
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 4026 dC Loves Number Theory (主席树+数论+欧拉函数)
题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值 还复习了欧拉函数以及线性筛逆元 考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[ ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- Codeforces_776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- Codeforces 776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- Python Challenge 第 5 关攻略:peak
# -*- coding: utf-8 -*- # @Time : 2018/9/26 14:03 # @Author : cxa # @File : pickledemo.py # @Softwar ...
- CKEDITOR的内容js转码,C#控制器解码接收
<script type="text/javascript" src="<%=Url.Content("~/Resource/ckeditor/ck ...
- RobotFramework基本用法(二)
双击打开C:\Python27\Scripts目录下的 ride.py 一,定义变量,打印 1,右键File-->New Poreject,在项目下右键New suite,在套件下右键 New ...
- MySQL 删除数据
删除数据的语句有三种:DELETE.DROP.TRUNCATE. 1.DELETE语句 DELETE 语句用于删除表中的行. 语法 DELETE FROM 表名称 WHERE 列名称 = 值 例如 - ...
- cocos2dx中调用TinyXml读取xml配置文件 || cocos2d-x 中跨平台tinyxml读取xml文件方式
TiXmlDocument *doc = newTiXmlDocument; #if (CC_TARGET_PLATFORM ==CC_PLATFORM_ANDROID) //Android平台tin ...
- java基础78 Servlet的生命周期
1.Servlet的生命周期 简单的解析就是: 创建servlet实例(调用构造器)---->调用init()方法---->调用service()方法----->调用destroy( ...
- python+selenium第一步 - 环境搭建
刚开始学习一门技术,肯定是要从环境搭建开始的,我也不例外. 首先选择需要安装的版本,我使用的是mac自带的2.7版本. selenium2,和火狐浏览器 为求稳定不会出现未知问题,我选择了seleni ...
- JAVA 解析TXT文本
package file; import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; im ...
- Executor
一.为什么需要Executor?为了更好的控制多线程,JDK提供了一套线程框架Executor,帮助开发人员有效的进行线程控制.他们都在java.util.concurrent包中,是JDK并发包的核 ...
- CCF CSP 201709-2 公共钥匙盒
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201709-2 公共钥匙盒 问题描述 有一个学校的老师共用N个教室,按照规定,所有的钥匙都必须 ...