题目链接

BZOJ2436

题解

看这\(O(n^3)\)的数据范围,可以想到区间\(dp\)

发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整活动数

我们的目标求出\(F[l][r]\)表示\([l,r]\)必须选时,二者的最小值

我们不妨令\(A\)选了\([l,r]\),我们枚举\(A\)在\([1,l - 1]\)和\([r + 1,tot]\)各选了多少,求出此时\(B\)能选的最大值

如果我们能求出\(f[i][j]\)表示\([1,i]\)中\(A\)选了\(j\)个时\(B\)能选的最大值,\(g[i][j]\)同理表示后缀,就可以求出\(F[l][r]\)

\(f[i][j]\)可以枚举断点\(k\)从而\(O(n^3)\)转移

\[f[i][j] = max\{f[k][j] + num[k + 1][i],f[i][j - num[k + 1][i]]\}
\]

\(F[l][r]\)的转移是\(O(n^4)\),这个过程中我们\(O(n^2)\)枚举了\(A\)在两端的选取个数

感性理解一下,当\(A\)在左端选多时,为了使答案更优,右端应该选少一些,所以左端增大的同时右端应该是单调变化的

用一个指针维护右端即可\(O(n^3)\)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 405,maxm = 100005,INF = 100000000;
const double eps = 1e-9;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
int n,L[maxn],R[maxn],b[maxn],bi,tot;
int f[maxn][maxn],g[maxn][maxn],num[maxn][maxn];
int F[maxn][maxn];
inline int getn(int x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
inline int cal(int l,int r,int x,int y){
return min(x + y + num[l][r],f[l - 1][x] + g[r + 1][y]);
}
void work(){
for (int j = 1; j <= n; j++) f[0][j] = -INF;
for (int i = 1; i <= tot; i++)
for (int j = 0; j <= n; j++){
f[i][j] = -INF;
for (int k = 0; k < i; k++){
int tmp = -INF;
if (num[1][k] >= j) tmp = max(tmp,f[k][j] + num[k + 1][i]);
if (num[k + 1][i] <= j) tmp = max(tmp,f[k][j - num[k + 1][i]]);
f[i][j] = max(f[i][j],tmp);
}
}
for (int j = 1; j <= n; j++) g[tot + 1][j] = -INF;
for (int i = tot; i; i--)
for (int j = 0; j <= n; j++){
g[i][j] = -INF;
for (int k = tot + 1; k > i; k--){
int tmp = -INF;
if (num[k][tot] >= j) tmp = max(tmp,g[k][j] + num[i][k - 1]);
if (num[i][k - 1] <= j) tmp = max(tmp,g[k][j - num[i][k - 1]]);
g[i][j] = max(g[i][j],tmp);
}
}
//REP(i,tot) REP(j,n) printf("f[%d][%d] = %d\n",i,j,f[i][j]);
int ans = 0;
for (int i = 0; i <= n; i++)
ans = max(ans,min(i,f[tot][i]));
printf("%d\n",ans);
for (int len = tot; len; len--)
for (int l = 1; l + len - 1 <= tot; l++){
int r = l + len - 1,y = num[r + 1][tot];
F[l][r] = max(F[l - 1][r],F[l][r + 1]);
for (int x = 0; x <= num[1][l - 1]; x++){
while (y > 0 && cal(l,r,x,y - 1) >= cal(l,r,x,y)) y--;
F[l][r] = max(F[l][r],cal(l,r,x,y));
}
}
REP(i,n) printf("%d\n",F[L[i]][R[i]]);
}
int main(){
n = read();
REP(i,n){
b[++bi] = L[i] = read();
b[++bi] = R[i] = read() + L[i] - 1;
}
sort(b + 1,b + 1 + bi); tot = 1;
for (int i = 2; i <= bi; i++) if (b[i] != b[tot]) b[++tot] = b[i];
REP(i,n){
L[i] = getn(L[i]),R[i] = getn(R[i]);
for (int l = L[i]; l; l--)
for (int r = R[i]; r <= tot; r++)
num[l][r]++;
}
//REP(i,n) printf("[%d,%d]\n",L[i],R[i]); puts("");
//printf("%d\n",num[3][5]);
work();
return 0;
}

BZOJ2436 [Noi2011]Noi嘉年华 【dp】的更多相关文章

  1. luogu P1973 [NOI2011]NOI 嘉年华 dp

    LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...

  2. bzoj2436: [Noi2011]Noi嘉年华

    我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...

  3. cogs 1377. [NOI2011] NOI嘉年华 (dp

    题意:给你n个活动的起止时间,要你从中选一些活动在2个会场安排(不能有两个活动在两个会场同时进行),使活动较少的会场活动数最大,以及在某个活动必须选择的前提下,求该答案. 思路:由于n很小,时间很大, ...

  4. 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

    2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...

  5. 2436: [Noi2011]Noi嘉年华 - BZOJ

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  6. bzoj 2436: [Noi2011]Noi嘉年华

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  7. NOI2011 NOI嘉年华

    http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...

  8. 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)

    洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...

  9. 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)

    传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...

随机推荐

  1. Swing的概述

    Swing在Java中是一个包,下面就是它的基本概述:简介: Java为了方便图形界面的实现, 专门设计了类库来满足各种各样的图形元素和用户交互事件, 该类库即为抽象窗口工具箱(Abstract Wi ...

  2. 亚马逊的客户服务和承诺 - Delay in shipping your Amazon.com order - Missed Fulfillment Promise

    We encountered a delay in shipping your order. We apologize for the inconvenience. Since your packag ...

  3. 虚拟机搭建Hadoop集群

    安装包准备 操作系统:ubuntu-16.04.3-desktop-amd64.iso 软件包:VirtualBox 安装包:hadoop-3.0.0.tar.gz,jdk-8u161-linux-x ...

  4. PHP中的文件包含

    在PHP中,包含文件有两种方式:include和require.这两种方式的功能一样,只有一个区别,就是使用require包含一个文件时,如果出现错误,脚本不会继续执行:而如果使用include包含, ...

  5. Daily Scrum (2015/11/6)

    今晚除了玉钟焕的其他成员在一起开了个短会.讨论有关添加新功能以及一些BUG问题.由于时间原因,我们本想把动态爬取功能留到第二个迭代中,但是现在目前时间还够,我们便一起对这一功能的讨论和实现进行分析. ...

  6. 安卓端通过http对Mysql进行增删改查

    各类it学习视频,大家都可以看看哦!我自己本人都是通过这些来学习it只知识的! 下面是视频链接转自:http://www.cnblogs.com/yzxk/p/4749440.html Android ...

  7. eclipse 中使用git

    1.安装egit插件,在新版的eclipse中已经集成了这个插件,省了不少时间, 旧版的eclipse可以在help->install new software中点击add,写入名称,网址具体如 ...

  8. spring 原理

    1.spring原理 内部最核心的就是IOC了,动态注入,让一个对象的创建不用new了,可以自动的生产,这其实就是利用java里的反射,反射其实就是在运行时动态的去创建.调用对象,Spring就是在运 ...

  9. Scapy 网段中ping扫描

    安装scapy pip3 install scapy-python3 交互式ip包构造 #scapy >>> ping = sr(IP(dst='202.100.1.1')/ICMP ...

  10. Week-2-作业1

    第一章 概论 1.什么是程序? 答:在学习软件工程导论前,我们已经学习了一些计算机语言和数据结构这样的课程,并深刻的知道“程序=数据结构+算法”,但在学习中还是会产生如书中1.1讲所提到的那些疑问,二 ...