算法

古埃及以前创造出灿烂的人类文明,他们的分数表示却非常令人不解。古埃及喜欢把一个分数分解为类似: 1/a + 1/b 的格式。

这里,a 和 b 必须是不同的两个整数,分子必须为 1

比方,2/15 一共同拥有 4 种不同的分解法(姑且称为埃及分解法):

1/8 + 1/120

1/9 + 1/45

1/10 + 1/30

1/12 + 1/20

那么, 2/45 一共同拥有多少个不同的埃及分解呢(满足加法交换律的算同种分解)?

这道题看似困难实则简单,仅仅用在给定数分母的左右側各设置一个游标并向两边滑动就可以。

感谢小小酥的提示。

import java.util.ArrayList;
import java.util.List; public class H3 {
public static void main(String[] args) {
int deno = 45;//分母
List<String> res = new ArrayList<>();
for(int i = deno-1; i>(deno-1)/2; i--) {//左側的游标
for(int j= deno+1; 2*i*j<=i*deno+j*deno; j++) {//右側的游标,循环条件是左右两个数的和(1/i+1/j)大于等于给定数(2/45)
if(2*i*j==i*deno+j*deno) {
res.add("1/"+i+"+"+"1/"+j);
}
}
}
//注:这里游标是不须要回溯的,大家能够想一下为什么
for(String s : res) {
System.out.println(s);
}
}
}

埃及分解:将2/n分解成为1/x+1/y的格式的更多相关文章

  1. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  2. matlab之矩阵分解

    矩阵分解 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积. 1.三角分解法: 要求原矩阵为方阵,将之分解成一个上三角形矩阵(或是排列(permute ...

  3. IOS 视频分解图片、图片合成视频

    在IOS视频处理中,视频分解图片和图片合成视频是IOS视频处理中经常遇到的问题,这篇博客就这两个部分对IOS视频图像的相互转换做一下分析. (1)视频分解图片 这里视频分解图片使用的是AVAssetI ...

  4. 特征值分解,奇异值分解(SVD)

    特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向 ...

  5. 实Schur分解

        前面已经说过LU,Cholesky和QR分解,这次介绍的是实Schur分解.对这个分解的定义是任意一个矩阵A,可有如下形式的分解:               U*A*U' = B;其中B是拟 ...

  6. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  7. SVD神秘值分解

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是由于SVD能够说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...

  8. SVD分解技术数学解释

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...

  9. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

随机推荐

  1. nginx防止DDOS攻击

    防御DDOS是一个系统工程,攻击花样多,防御的成本高瓶颈多,防御起来即被动又无奈.DDOS的特点是分布式,针对带宽和服务攻击,也就是四层流量攻击和七层应用攻击,相应的防御瓶颈四层在带宽,七层的多在架构 ...

  2. Linux基础入门学习笔记之三

    第四节 Linux目录结构及文件基本操作 Linux目录结构 Linux 的目录与 Windows 的目录的区别 目录与存储介质(磁盘,内存,DVD 等)的关系 Windows 一直是==以存储介质为 ...

  3. html meta标签使用总结(转)

    之前学习前端中,对meta标签的了解仅仅只是这一句. <meta charset="UTF-8"> 但是打开任意的网站,其head标签内都有一列的meta标签.比如我博 ...

  4. Windows 10利用自带的 Hyper-v 安装Linux

    Linux由于其众多独特的优势(可参见Linux系统的优势),而被很多人所喜爱.而要使用Linux那首先要做的工作就是安装Linux系统了.这里给出在 win10 下利用虚拟机 Hyper-v 安装 ...

  5. IdentityServer4揭秘---Consent(同意页面)

    授权同意页面与登录一样首先要分析页面的需要什么模型元素后建立相关的模型类 界面的话就 记住选择  .按钮.RuturnUrl.以及选择的资源Scope /// <summary> /// ...

  6. 【AtCoder】AGC005F - Many Easy Problems

    题解 我们把一个点的贡献转化为一条边的贡献,因为边的数量是点的数量-1,最后再加上选点方案数\(\binom{n}{k}\)即可 一条边的贡献是\(\binom{n}{k} - \binom{a}{k ...

  7. bzoj 1237 [SCOI2008]配对 贪心+dp

    思路:dp[ i ] 表示 排序后前 i 个元素匹配的最小值, 我们可以发现每个点和它匹配的点的距离不会超过2,这样就能转移啦. #include<bits/stdc++.h> #defi ...

  8. Django实战(18):提交订单

    前面的内容已经基本上涵盖了Django开发的主要方面,我们从需求和界面设计出发,创建模型和修改模型,并通过scaffold作为开发的起点:在scaffold的基础上重新定制模板,并且通过Model类和 ...

  9. CSS实现带阴影效果的三角形

    具体实现 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta ...

  10. 010 secondary namenode(同步元数据和日志)

    1.格式化 首先格式化之后只剩下一个根目录. 格式化后会出现元数据 集群启动之后,元数据放在内存中的(消耗内存中) 格式化后会产生镜像文件fsimage,元数据存储 启动的时候namenode会读取镜 ...