[JSOI2018]潜入行动
我好菜啊,嘤嘤嘤
原来本地访问数组负下标不会报\(RE\)或者\(WA\),甚至能跑出正解啊
这道题还是非常呆的
我们发现\(k\)很小,于是断定这是一个树上背包
发现在一个点上安装控制器并不能控制这个点,可能需要到父亲那边才能控制这个点,于是我们设\(dp[i][j][0/1][0/1]\)表示在以\(i\)为根的子树里放置了\(j\)个监视器,控制了除了点\(i\)以外的点,在\(i\)点装没装控制器,\(i\)点有没有被控制
大力分类套论几个转移
\(dp[i][j][0][0]\)因为没有放监视器,必须要求其儿子们在他们的子树内部就被监视了,同时因为\(i\)还没有被监视,于是儿子不能放监视器,于是从\([0][1]\)转移
\(dp[i][j][1][0]\)因为放了监视器,能监视儿子,于是儿子们有没有被监视都可以,但是都不能放监视器,于是从\([0][1]\)和\([0][0]\)转移
\(dp[i][j][0][1]\)因为没有放监视器,儿子们必须全部被监视到从\([0][1]\)转移,因为\(i\)被监视,所以至少得有一个儿子放监视器,所以至少一个从\([1][1]\)转移
\(dp[i][j][1][1]\)放了监视器,而要求被监视,从四种状态都能转移,但是要求至少有一个转移是\([1][0]\)或\([1][1]\)(放了监视器)
直接树形背包转移,之后大力容斥掉没有选择那个至少要选择的情况就好了
发现\(dp[i][j][0][1]\)要减掉的正好是\(dp[i][j][0][0]\),\(dp[i][j][1][1]\)要减掉的正好是\(dp[i][j][1][0]\)
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=1e5+5;
const int mod=1e9+7;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt;}e[maxn<<1];
int head[maxn],sum[maxn];
int dp[maxn][105][2][2];
int f[105][2][2];
int n,m,num;
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
inline int qm(int a) {return a>mod?a-mod:a;}
void dfs(int x,int fa) {
int cur=0;
sum[x]=1;
for(re int i=head[x];i;i=e[i].nxt) {
if(e[i].v==fa) continue;
int v=e[i].v;
dfs(v,x);cur++;
sum[x]+=sum[v];
int U=min(sum[x],m);
if(cur==1) {
for(re int k=0;k<=min(sum[v],m);k++) {
dp[x][k][0][0]=dp[v][k][0][1];
dp[x][k+1][1][0]=qm(dp[v][k][0][1]+dp[v][k][0][0]);
dp[x][k+1][1][1]=(dp[v][k][1][1]+dp[v][k][1][0])%mod+(dp[v][k][0][0]+dp[v][k][0][1])%mod;
dp[x][k+1][1][1]%=mod;
dp[x][k][0][1]=qm(dp[v][k][1][1]+dp[v][k][0][1]);
}
continue;
}
for(re int j=U;j>=0;--j) {
f[j][0][0]=dp[x][j][0][0],dp[x][j][0][0]=0;
f[j][0][1]=dp[x][j][0][1],dp[x][j][0][1]=0;
f[j][1][0]=dp[x][j][1][0],dp[x][j][1][0]=0;
f[j][1][1]=dp[x][j][1][1],dp[x][j][1][1]=0;
}
for(re int j=U;j>=0;--j)
for(re int k=0;k<=min(sum[v],m);k++) {
int t=j-k;
if(t<0) continue;
dp[x][j][0][0]=(dp[x][j][0][0]+1ll*f[t][0][0]*dp[v][k][0][1]%mod)%mod;
dp[x][j][1][0]=(dp[x][j][1][0]+1ll*f[t][1][0]*qm(dp[v][k][0][1]+dp[v][k][0][0])%mod)%mod;
dp[x][j][0][1]=(dp[x][j][0][1]+1ll*f[t][0][1]*qm(dp[v][k][1][1]+dp[v][k][0][1])%mod)%mod;
dp[x][j][1][1]=(dp[x][j][1][1]+1ll*f[t][1][1]*qm(qm(dp[v][k][1][1]+dp[v][k][1][0])+qm(dp[v][k][0][0]+dp[v][k][0][1]))%mod)%mod;
}
}
if(!cur) {dp[x][0][0][0]=dp[x][1][1][0]=1;return;}
for(re int j=0;j<=min(sum[x],m);j++)
dp[x][j][0][1]=(dp[x][j][0][1]-dp[x][j][0][0]+mod)%mod,
dp[x][j][1][1]=(dp[x][j][1][1]-dp[x][j][1][0]+mod)%mod;
}
int main() {
n=read();m=read();
for(re int x,y,i=1;i<n;i++)
x=read(),y=read(),add(x,y),add(y,x);
dfs(1,0);
printf("%d\n",(dp[1][m][0][1]+dp[1][m][1][1])%mod);
return 0;
}
[JSOI2018]潜入行动的更多相关文章
- 【BZOJ5314】[JSOI2018]潜入行动(动态规划)
[BZOJ5314][JSOI2018]潜入行动(动态规划) 题面 BZOJ 洛谷 题解 不难想到一个沙雕\(dp\),设\(f[i][j][0/1][0/1]\)表示当前点\(i\),子树中一共放了 ...
- BZOJ5314: [Jsoi2018]潜入行动
BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...
- [bzoj5314][Jsoi2018]潜入行动_树形背包dp
潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...
- BZOJ5314:[JSOI2018]潜入行动——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5314 https://www.luogu.org/problemnew/show/P4516 ht ...
- bzoj 5314: [Jsoi2018]潜入行动
Description 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY已经联系好了黄金舰队,打算联合所有JSO Ier抵御外星人的进攻.在黄金舰队就位之前,JYY打算事先了解外星人 ...
- [loj2546][JSOI2018]潜入行动(树形DP)
题目描述 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY 已经联系好了黄金舰队,打算联合所有 JSOIer 抵御外星人的进攻. 在黄金舰队就位之前,JYY 打算事先了解外星人的进攻 ...
- luogu P4516 [JSOI2018]潜入行动
LINK:潜入行动 初看题感觉很不可做 但是树形dp的状态过于明显. 容易设\(f_{x,j,l,r}\)表示x为根子树内放了j个设备且子树内都被覆盖l表示x是否被覆盖r表示x是否放设备的方案数. 初 ...
- BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】
题目链接 BZOJ5314 题解 设\(f[i][j][0|1][0|1]\)表示\(i\)为根的子树,用了\(j\)个监测器,\(i\)节点是否被控制,\(i\)节点是否放置的方案数 然后转移即可 ...
- BZOJ5314: [Jsoi2018]潜入行动 (树形DP)
题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...
随机推荐
- 撩课-Web大前端每天5道面试题-Day25
1.web前端开发,如何提高页面性能优化? 内容方面: .减少 HTTP 请求 (Make Fewer HTTP Requests) .减少 DOM 元素数量 (Reduce the Number o ...
- win10 安装oracle 11gR2_database(内附下载地址)
前言:想要为了后续开展项目做准备,而且打算使用oracle,所以必须先安装oracle.本机 win 10 64位系统. 第一步,下载 oracle 下载地址,官网(需要登录注册): http://d ...
- Highchar.js插件提示框千分位显示为空格而不是逗号 --(2018 08/06-08/12周总结)
1.Oracle在已经存在主键的表中插入复合主键的SQL语句 如已有一个表test_key,其中a1列为主键. CREATE TABLE TEST_KEY( A1 VARCHAR2(3) NOT NU ...
- 实习小结(四)--- MyBatis Generator使用
第一次听闻MyBatis Generator插件很是惊讶,已经有这么便捷方式的工具通过数据库表来自动生成实体类,映射文件,接口以及帮助类,而且可以通过自己写方法来增加中文注释,遂来学习一波.首先先建一 ...
- 【学习笔记】--- 老男孩学Python,day18 面向对象------继承
继承 继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类, 父类又可称为基类或超类,新建的类称为派生类或子类 python中类的继承分为:单继承和多继承 class Fathe ...
- jQuery 遮盖层弹出后禁止页面滚动
css部分 .ovfHiden{ overflow: hidden; height: 100%; } js部分 $(".btn1").click(funct ...
- CSS 高度(css height)
DIV+CSS height高度知识教程篇 DIV CSS高度简介这里的CSS高度是指通过CSS来控制设置对象的高度.使用CSS属性单词height.单位可以使用PX,em等常用使用PX(像素)为ht ...
- 【CVE-2018-11116】openwrt rpcd 配置文件错误导致访问控制失效
User can access to ubus over HTTP. This way depend on rpcd service. When misconfigure the rpcd's ACL ...
- alter system register的用法
转自 http://blog.csdn.net/njyxfw/article/details/7516143 今天一个同事问到我,有没动态注册监听的命令,查了下,找到了alter system reg ...
- 通过html导出PDF如何分页
每页一个DIV,加上样式page-break-inside:avoid; 即可分页了 .pdfpage{page-break-inside:avoid;} <div class="pd ...