BZOJ 3173 最长上升子序列(树状数组+二分+线段树)
给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?
由于序列是顺序插入的,所以当前插入的数字对之前的数字形成的最长上升子序列没有任何影响,所以只需要计算出当前的这个数字结尾的上升子序列长度。
由于$dp[i]=max(dp[j])+1(j<i)$,所以可以用线段树维护。
这样就需要预先计算出来这个序列的最后的状态,考虑从n到1倒着算,二分这个数字出现的位置。
因此总时间复杂度为$O(nlogn)$.
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
namespace IO{
char buf[<<], *fs, *ft;
inline char readc(){
return (fs==ft&&(ft=(fs=buf)+fread(buf,,<<,stdin)),fs==ft)?EOF:*fs++;
}
inline int Scan(){
char c; int r;
while(c = readc()){if(isdigit(c)){r = c^0x30;break;}}
while(isdigit(c = readc()))r = (r<<)+(r<<)+(c^0x30);
return r;
}
inline int Scan_s(char *str){
int len = ;char c;
while(!isalpha(c = readc()));str[] = c;
while(isalpha(c = readc()))str[len++] = c;
str[len] = ;
return len;
}
};using IO::Scan_s; using IO::Scan; const int N=;
//Code begin... int a[N], b[N], tree[N], seg[N<<], ans[N]; void add(int x){while (x<N) ++tree[x], x+=lowbit(x);}
int sum(int x){
int res=;
while (x) res+=tree[x], x-=lowbit(x);
return res;
}
void push_up(int p){seg[p]=max(seg[p<<],seg[p<<|]);}
void update(int p, int l, int r, int L, int val){
if (L>r||L<l) return ;
if (L==l&&L==r) seg[p]=val;
else {
int mid=(l+r)>>;
update(lch,L,val); update(rch,L,val); push_up(p);
}
}
int query(int p, int l, int r, int L, int R){
if (L>r||R<l) return ;
if (L<=l&&R>=r) return seg[p];
int mid=(l+r)>>;
return max(query(lch,L,R),query(rch,L,R));
}
int main ()
{
int n;
scanf("%d",&n);
FOR(i,,n) scanf("%d",a+i), ++a[i];
FDR(i,n,) {
int l=a[i], r=n+, mid;
while (l<r) {
mid=(l+r)>>;
if (sum(mid)<=mid-a[i]) r=mid;
else l=mid+;
}
a[i]=r; add(a[i]);
}
FOR(i,,n) ans[i]=query(,,n,,a[i])+, update(,,n,a[i],ans[i]);
FOR(i,,n) ans[i]=max(ans[i],ans[i-]);
FOR(i,,n) printf("%d\n",ans[i]);
return ;
}
BZOJ 3173 最长上升子序列(树状数组+二分+线段树)的更多相关文章
- 树状数组+二分||线段树 HDOJ 5493 Queue
题目传送门 题意:已知每个人的独一无二的身高以及排在他前面或者后面比他高的人数,问身高字典序最小的排法 分析:首先对身高从矮到高排序,那么可以知道每个人有多少人的身高比他高,那么取较小值(k[i], ...
- POJ 2892 Tunnel Warfare || HDU 1540(树状数组+二分 || 线段树的单点更新+区间查询)
点我看题目 题意 :N个村子连成一条线,相邻的村子都有直接的地道进行相连,不相连的都由地道间接相连,三个命令,D x,表示x村庄被摧毁,R ,表示最后被摧毁的村庄已经重建了,Q x表示,与x直接或间 ...
- [BZOJ 3196] 213平衡树 【线段树套set + 树状数组套线段树】
题目链接:BZOJ - 3196 题目分析 区间Kth和区间Rank用树状数组套线段树实现,区间前驱后继用线段树套set实现. 为了节省空间,需要离线,先离散化,这样需要的数组大小可以小一些,可以卡过 ...
- [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】
题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...
- BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...
- bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1384 Solved: 629[Submit][Stat ...
- BZOJ 1901 Zju2112 Dynamic Rankings 树状数组套线段树
题意概述:带修改求区间第k大. 分析: 我们知道不带修改的时候直接上主席树就可以了对吧?两个版本号里面的节点一起走在线段树上二分,复杂度是O((N+M)logN). 然而这里可以修改,主席树显然是凉了 ...
- 【BZOJ3196】二逼平衡树(树状数组,线段树)
[BZOJ3196]二逼平衡树(树状数组,线段树) 题面 BZOJ题面 题解 如果不存在区间修改操作: 搞一个权值线段树 区间第K大--->直接在线段树上二分 某个数第几大--->查询一下 ...
- [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)
[APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...
随机推荐
- 约束3:default约束
默认值约束(Default约束)的作用是在执行insert命令时,如果命令没有显式给指定的列赋值,那么把默认约束值插入到该列中:如果在Insert命令中显式为指定的列赋值,那么将该列插入用户显式指定的 ...
- 初探JSP运行机制和与Servlet间的关系
自己看的书,手动画的图,如果有错误,请指正,谢谢.
- bootstrap框架中data-toggle="tab"属性会取消a标签默认行为
这几天做公司项目用了bootstrap框架,在用导航组件的过程中,我发现在a标签里面添加data-toggle="tab"属性之后,这个a标签会失去默认行为,点击a标签的时候不会跳 ...
- 六种流行的语言大餐---C、C++、python、Java、php、C#你更喜欢哪一个呢?
引言 鉴于五一期间超大的人流量,LZ思来想去,最终还是选择蜗居在自己的出租屋.无聊之际,当然不能忘了做点什么事情,于是LZ就研究了一下几种语言的皮毛,在这里献丑一翻,希望各位猿友莫要见笑. 不过说来也 ...
- docker-compose 部署 EFK
信息: Docker版本($ docker --version):Docker版本18.06.1-ce,版本e68fc7a 系统信息($ cat /etc/centos-release):CentOS ...
- JavaWeb项目学习教程(2) 系统数据库设计
最开始本来想写一个管理系统,因为考虑到期末来临,我女朋友就可以看着教程然后学一些东西,然后可以自己慢慢手敲代码.但无奈自己也太懒,两个月过后,我才开始继续写这个博客,而现在我都已经开学了.不过博客还是 ...
- vue.js和vue-router和vuex快速上手知识
vue.js和vue-router和vuex快速上手知识 一直以来,认为vue相比react而言,学习成本会更低,会更简单,但最近真正接触后,发现vue的各方面都有做一些客户化的优化,有一些亮点,但也 ...
- 《Redis设计与实现》阅读笔记(一)--Redis学习
Redis学习资料与过程记录 在实习中经常会用到很多Redis,对Redis有了一些模糊的了解,总觉得隔靴搔痒的不痛快,所以决定开始深入的了解Redis,也作为我实习期间的目标. 这篇只是为了占个位置 ...
- SICP读书笔记 2.3
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- MapReduce任务学习系列
首先放一张官方图片,大致了解下整个MapReduce的处理过程. 抛出如下疑问: 1.MapReduce的基本原理是什么?即利用什么机制来实现的任务拆分处理? 2.MapReduce任务执行过程是什么 ...