Lesson10——NumPy 迭代数组
NumPy 迭代数组
NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。
迭代器最基本的任务的可以完成对数组元素的访问。
Example:使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代。
a = np.arange(6).reshape(2,3)
print('原始数组是')
print(a)
print('迭代输出元素')
for x in np.nditer(a):
print(x,end=' ')
#输出结果
原始数组是
[[0 1 2]
[3 4 5]]
迭代输出元素
0 1 2 3 4 5
Example:
a = np.arange(8).reshape(2,2,2)
print('原始数组是')
print(a)
print('迭代输出元素')
for x in np.nditer(a):
print(x,end=' ') #输出结果
原始数组是
[[[0 1]
[2 3]] [[4 5]
[6 7]]]
迭代输出元素
0 1 2 3 4 5 6 7
以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)。
这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。我们可以通过迭代上述数组的转置来看到这一点,并与以 C 顺序访问数组转置的 copy 方式做对比,如下实例:
Example:
a = np.arange(6).reshape(2,3)
for x in np.nditer(a.T):
print(x,end=' ')
print()
print(a.T.copy(order ='C'))
for x in np.nditer(a.T.copy(order ='C')):
print(x,end=' ')
#输出结果
0 1 2 3 4 5
[[0 3]
[1 4]
[2 5]]
0 3 1 4 2 5
从上述例子可以看出,a 和 a.T 的遍历顺序是一样的,也就是他们在内存中的存储顺序也是一样的,但是 a.T.copy(order = 'C') 的遍历结果是不同的,那是因为它和前两种的存储方式是不一样的,默认是按行访问。
控制遍历顺序
for x in np.nditer(a, order='F'):Fortran order,即是列序优先;for x in np.nditer(a.T, order='C'):C order,即是行序优先;
Example:
a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('\n')
print ('原始数组的转置是:')
b = a.T
print (b)
print ('\n')
print ('以 C 风格顺序排序:')
c = b.copy(order='C')
print (c)
for x in np.nditer(c):
print (x, end=", " )
print ('\n')
print ('以 F 风格顺序排序:')
c = b.copy(order='F')
print (c)
for x in np.nditer(c):
print (x, end=", " )
#输出结果
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] 原始数组的转置是:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]] 以 C 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55, 以 F 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
可以通过显式设置,来强制 nditer 对象使用某种顺序:
Example:
a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('\n')
print ('以 C 风格顺序排序:')
for x in np.nditer(a, order = 'C'):
print (x, end=" " )
print ('\n')
print ('以 F 风格顺序排序:')
for x in np.nditer(a, order = 'F'):
print (x, end=" " )
#输出结果
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] 以 C 风格顺序排序:
0 5 10 15 20 25 30 35 40 45 50 55 以 F 风格顺序排序:
0 20 40 5 25 45 10 30 50 15 35 55
修改数组中元素的值
nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write 或者 write-only 的模式。
Example:
x = np.arange(6).reshape((2,3))
print('The original array is')
print(x)
for tmp in np.nditer(x,op_flags =['readwrite']):
tmp[...] = 1
print("The modified array is")
print(x)
#output result
"""
The original array is
[[0 1 2]
[3 4 5]]
The modified array is
[[1 1 1]
[1 1 1]]
"""
使用外部循环
nditer 类的构造器拥有 flags 参数,它可以接受下列值:
| 参数 | 描述 |
|---|---|
c_index |
可以跟踪 C 顺序的索引 |
f_index |
可以跟踪 Fortran 顺序的索引 |
multi_index |
每次迭代可以跟踪一种索引类型 |
external_loop |
给出的值是具有多个值的一维数组,而不是零维数组 |
在下面的实例中,迭代器遍历对应于每列,并组合为一维数组。
Example:
x = np.arange(9).reshape((3,3))
print("The original array is ")
print(x)
print('The modified array is ')
for x in np.nditer(x,flags=['external_loop'],order='F'):
print(x)
#output result
"""
The original array is
[[0 1 2]
[3 4 5]
[6 7 8]]
The modified array is
[0 3 6]
[1 4 7]
[2 5 8]
"""
广播迭代
如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 $ a $ 的维度为 $3X4$,数组 $b$ 的维度为 $1X4$ ,则使用以下迭代器(数组 $b$ 被广播到 $a$ 的大小)。
Example:
a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('First array:')
print (a)
print ('\n')
print ('Second array:')
b = np.array([1, 2, 3, 4], dtype = int)
print (b)
print ('\n')
print ('The modified array :')
for x,y in np.nditer([a,b]):
print ("%d:%d" % (x,y), end=", " )
#output result
"""
First array:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] Second array:
[1 2 3 4] The modified array :
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1, 45:2, 50:3, 55:4,
"""
Lesson10——NumPy 迭代数组的更多相关文章
- NumPy 迭代数组
NumPy 迭代数组 NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式. 迭代器最基本的任务的可以完成对数组元素的访问. 接下来我们使用 arange() ...
- NumPy迭代数组
numpy.nditer是NumPy的一个迭代器对象,提供能够灵活的访问一个或者多个属猪元素的方式. # 迭代 z=np.arange(6).reshape(3,2) for x in np.ndit ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 迭代数组
import numpy as np a = np.arange(6).reshape(2,3) print ('原始数组是:') print (a) print ('\n') print ('迭代输 ...
- 找出numpy array数组的最值及其索引
在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where ...
- python 工具 字符串转numpy浮点数组
不同的数字之间使用 空格“ ”,“$”,"*"等隔开,支持带小数点的字符串NumArray=str2num(LineString,comment='#')将字符串中的所有非Doub ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
- numpy使用数组进行数据处理
numpy使用数组进行数据处理 meshgrid函数 理解: 二维坐标系中,X轴可以取三个值1,2,3, Y轴可以取三个值7,8, 请问可以获得多少个点的坐标? 显而易见是6个: (1,7)(2,7) ...
- python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- Numpy中数组的乘法
Numpy中数组的乘法 按照两个相乘数组A和B的维度不同,分为以下乘法: 数字与一维/二维数组相乘: 一维数组与一维数组相乘: 二维数组与一维数组相乘: 二维数组与二维数组相乘: numpy有以下乘法 ...
随机推荐
- select 1 from 是什么意思?有什么作用?
参考:https://www.douban.com/note/518373959/ 一.select 1 from 的作用1.select 1 from mytable 与 select anycol ...
- 初识python 之 smtplib 发送(dolphinscheduler任务监测)邮件
需求 监测dolphinscheduler调度系统,任务执行异常情况.如有异常,则发送邮件通知. 处理思路 因DS本身自带的邮件发送功能,不能正常发送邮件. 故而,通过查询DS源数据表,获取当前任务执 ...
- hive 之 将excel数据导入hive中 : excel 转 txt
一.需求: 1.客户每月上传固定格式的excel文件到指定目录.每月上传的文件名只有结尾月份不同,如: 10月文件名: zhongdiangedan202010.xlsx , 11月文件名: zh ...
- lombok不支持enum类型
今天在使用枚举时想着少写getter方法和构造方法,结果加上注解后说是只支持class类型 来自为知笔记(Wiz)
- 使用 navigator.userAgent.toLowerCase() 区别 浏览器 类型
userAgent 属性是一个只读的字符串,声明了浏览器用于 HTTP 请求的用户代理头的值 var ua = navigator.userAgent.toLowerCase(); 返回的是个字符串 ...
- vue中另一种路由写法
一个项目中一级菜单是固定的,二级及其以下的菜单是动态的,直接根据文件夹结构写路由 import Vue from 'vue' import Router from 'vue-router' impor ...
- 服务性能监控之Micrometer详解
Micrometer 为基于 JVM 的应用程序的性能监测数据收集提供了一个通用的 API,支持多种度量指标类型,这些指标可以用于观察.警报以及对应用程序当前状态做出响应. 通过添加如下依赖可以将 M ...
- HDURomantic
Problem - 1004 (hdu.edu.cn) 扩展欧几里得解决线性同余方程.先得到gcd的解,再恢复原解,因为知道通解的一般形式,所以通过模来得到最小正整数解.另一个可以通过相减,或者一样的 ...
- 2021最新Termux安装Metasploit
前言 因为某些脚本小子的用Termux搞破坏,所以Termux软件源移除了对Metasploit的支持,所以就不能直接用pkg和apt直接安装了. 但是不用担心,noob-hacker大大写了一个工具 ...
- 个人作业2-6.4-Python爬取顶会信息
1.个人作业2 数据爬取阶段 import requestsfrom lxml import etreeimport pymysqldef getdata(url): # 请求CVPR主页 page_ ...