题目链接

大意

给定\(N,M,K\),表示有一个\(N*N\)的空矩阵,\(M\)个不同的数。

随机地把\(M\)个数中的\(N^2\)个数丢进这个空矩阵中(\(M\ge N^2\))

再从\(M\)个数中随机选\(K\)个不同的数,在矩阵上将这\(K\)个数标记出来(如果有)。

设\(T\)的值为完全被标记的整行与整列个数。

求\(2^T\)的期望值与\(1e99\)的较小值。

思路

首先,对于\(2^T\)这种奇怪的东西,我们可以将其理解为该种情况的所有子集个数。

即有些情况可能会被多次计算也是合法的,所以不用容斥。

则答案就是所有的\(T\)值出现个数的期望值。

然后有一个比较显然的想法:不妨枚举一下\(R,C\),表示至少有\(R\)整行,\(C\)整列被标记完。

则此时有一个\(C(N,R)\times C(N,C)\)表示在该情况下的\(T\)值总个数。

而这种方案的出现概率\(P[R][C]\)的值就为出现该情况数除以总情况数。

我们不妨设\(Z=(R+C)\times N-R\times C\),即这\(Z\)个数都会在所选的\(K\)个数中。

则有:

\[P[R][C]=\frac{C(M,K)\cdot A(K,Z)\cdot A(M-Z,N^2-Z)}{C(M,K)\cdot A(M,N^2)}
\]

将该式子化简后得:

\[P[R][C]=\frac{C(M-Z,K-Z)}{C(M,K)}
\]

即该情况对答案的贡献就为\(C(N,R)\times C(N,C)\times \frac{C(M-Z,K-Z)}{C(M,K)}\)

小注:

对于\(P[R][C]\)的理解:

  • 对于第一个式子的理解:

    分子:枚举了\(K\)的选择,\(Z\)的上色选择,剩下的\(N^2-Z\)的上色选择。

    分母:考虑了每一种矩阵上色情况以及每一种\(K\)的选择的总方案数。
  • 对于第二个式子的理解:发现预涂色对答案统计无影响

    分子:\(Z\)个数的位置以及颜色已经固定,则这\(Z\)个数一定在\(K\)个数中,剩下的\(K-Z\)个乱选就行了。

    分母:矩阵的颜色已经上好,则总方案数只有\(C(M,K)\)

对于答案的保存方式:

使用long double来存储一个数的log()值,

则乘法变加法,除法变减法,最后再统一出解。

代码

#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
#define LD long double
const int MAXN=100005;
int N,M,K;
LD f[MAXN],Ans;
LD C(int x,int y){
return f[x]-f[y]-f[x-y];
}
int main(){
scanf("%d%d%d",&N,&M,&K);
for(int i=1;i<=1e5;i++)
f[i]=f[i-1]+log(1.0*i);
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++){
int z=N*(i+j)-i*j;
if(z>K)continue;
LD tmp=C(N,i)+C(N,j)+C(M-z,K-z)-C(M,K);
Ans=min((LD)(1e99),Ans+exp(tmp));
}
printf("%.10f\n",(double)Ans);
}

【CF457D】Bingo!(数学 期望)的更多相关文章

  1. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  2. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  3. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  4. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  5. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  6. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  7. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  8. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  9. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

随机推荐

  1. ANT 通配符使用说明

    通配符说明 通配符 说明 ? 匹配任意一个字符 * 匹配零个.一个.多个字符 ** 匹配零个.一个.多个目录 使用示例 URL路径 说明 /app/p?ttern 匹配 /app/pattern 和 ...

  2. navicat 找不到系统路径 【修改了系统路径中文名称引起的】

    这是我还没修改系统路径中文名称时的路径, 怎么办? 关闭当前用户连接 右键,选择连接属性 把那个改了即可

  3. 第10组 Alpha冲刺 (5/6)

    1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/13996848.html ·作业博客:https://edu.cnblogs.co ...

  4. Elasticsearch打造全文搜索引擎(一)

     带着问题上路--ES是如何产生的? (1)思考:大规模数据如何检索? 如:当系统数据量上了10亿.100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题: 1)用什么数据库好?(mysq ...

  5. vue2.0组件库

    UI组件 element - 饿了么出品的Vue2的web UI工具套件 Vux - 基于Vue和WeUI的组件库 mint-ui - Vue 2的移动UI元素 iview - 基于 Vuejs 的开 ...

  6. SSRF服务器端请求伪造漏洞基础

    0x00 思考 1.什么是SSRF漏洞?2.SSRF漏洞的利用方式3.SSRF漏洞绕过4.SSRF漏洞加固 0x01 什么是SSRF漏洞 定义:SSRF漏洞,中文全称为服务端请求伪造漏洞,是一种由攻击 ...

  7. CTF-sql-宽字节注入

    本文章主要涉及sql宽字节注入注入的原理讲解,如有错误,望指出.(附有目录,如需查看请点右下角) 一.首先介绍一下本篇文章所用到的知识点: 常用到的url编码: 空格:%20 单引号:%27 在sql ...

  8. 基于Node和Electron开发了轻量版API接口请求调试工具——Post-Tool

    Electron 是一个使用 JavaScript.HTML 和 CSS 构建桌面应用程序的框架. 嵌入 Chromium 和 Node.js 到 二进制的 Electron 允许您保持一个 Java ...

  9. [源码分析] Facebook如何训练超大模型---(1)

    [源码分析] Facebook如何训练超大模型---(1) 目录 [源码分析] Facebook如何训练超大模型---(1) 0x00 摘要 0x01 简介 1.1 FAIR & FSDP 1 ...

  10. 【记录一个问题】thanos receiver在tsdb切换期间,导致remote write接口失败增加

    如图:配置了thanos receiver落盘的时间周期为10分钟,结果导致在切换tsdb期间,remote write接口的失败率增高. 目前看来,解决办法就是上游增加重试.