正题

题目链接:http://www.ybtoj.com.cn/contest/123/problem/1


题目大意

给出\(3\)个长度为\(n\)的排列\(A,B,C\)。然后一个下标集合\(S\)的三元组是

\[(max\{A_i\},max\{B_i\},max\{C_i\})(i\in S)
\]

求所有下标集合不同的三元组数量

\(1\leq n\leq 10^5\)


解题思路

所有下标集合的三元组都能用一个\(|S|\leq 3\)的集合代替,所以我们只考虑\(|S|\leq 3\)的就好了。

\(|S|=1\)的个数就是\(n\),直接累加即可。

\(|S|=2\)的话,那就代表某个下标霸占了两个最大值,而另一个一定是另一个下标的,如果是\(a,b\)最大,那么我们就要找满足\(a_i> a_j,b_i> a_j,c_i< c_j\)的方案,用三维偏序就好了。

然后\(a,c\)和\(b,c\)的情况也都要做

\(|S|=3\)的话很麻烦,考虑容斥,总方案\(\binom n 3\)减去有一个下标是至少两个的最大值。

同样和上面,先考虑\(a,b\),假设下标\(i\)满足\(a_i>a_j,b_i>b_j\)的情况有\(k\)种,那么就好有\(\binom{k}{2}\)种情况使得\(i\)占据了至少两个最大值。

同理\(a,c\)和\(b,c\)也要做,这是二维偏序,直接树状数组就好了。

但是发现对于\(i\)占据了三个最大值的情况我们统计了三次,需要加回多余的两次,那么统计\(a_i>a_j,b_i>b_j,c_i>c_j\)的个数\(k\),然后加回\(k(k-1)\)的方案就好了,这个也要三维偏序

代码里三维偏序用的是\(CDQ\)分治+树状数组

时间复杂度\(O(n\log^2 n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define lowbit(x) (x&-x)
using namespace std;
const ll N=1e5+10;
struct node{
ll a,b,c;
}w[N],a[N],b[N];
ll n,ans,sum,t[N],g[N];
void Change(ll x,ll val){
while(x<=n){
t[x]+=val;
x+=lowbit(x);
}
return;
}
ll Ask(ll x){
ll ans=0;
while(x){
ans+=t[x];
x-=lowbit(x);
}
return ans;
}
void Merge(ll l,ll mid,ll r){
ll p=l,q=mid+1;
for(ll i=1;i<=r-l+1;i++){
if(p<=mid&&w[p].b<=w[q].b||q>r)b[i]=w[p],p++;
else b[i]=w[q],q++;
}
for(ll i=1;i<=r-l+1;i++)w[l+i-1]=b[i];
return;
}
void CDQ(ll l,ll r,bool op){
if(l==r)return;
ll mid=(l+r)>>1;
CDQ(l,mid,op);CDQ(mid+1,r,op);
ll p=l,tmp;
for(ll i=mid+1;i<=r;i++){
while(p<=mid&&w[p].b<w[i].b)
Change(w[p].c,1),p++;
sum+=(tmp=Ask(w[i].c));
g[w[i].a]+=(op?tmp:0);
}
for(ll i=l;i<p;i++)Change(w[i].c,-1);
Merge(l,mid,r);return;
}
bool cmp(node x,node y)
{return x.a<y.a;}
void solve(){
sort(w+1,w+1+n,cmp);
for(ll i=1;i<=n;i++){
ll tmp=Ask(w[i].b);
ans-=tmp*(tmp-1)/2;
Change(w[i].b,1);
}
memset(t,0,sizeof(t));
return;
}
signed main()
{
freopen("subset.in","r",stdin);
freopen("subset.out","w",stdout);
scanf("%lld",&n);ans=n;
for(ll i=1;i<=n;i++)scanf("%lld",&a[i].a);
for(ll i=1;i<=n;i++)scanf("%lld",&a[i].b);
for(ll i=1;i<=n;i++)scanf("%lld",&a[i].c); for(ll i=1;i<=n;i++)
w[i].a=a[i].a,w[i].b=a[i].b,w[i].c=n-a[i].c+1;
sort(w+1,w+1+n,cmp);CDQ(1,n,0);
for(ll i=1;i<=n;i++)
w[i].a=a[i].a,w[i].b=a[i].c,w[i].c=n-a[i].b+1;
sort(w+1,w+1+n,cmp);CDQ(1,n,0);
for(ll i=1;i<=n;i++)
w[i].a=a[i].b,w[i].b=a[i].c,w[i].c=n-a[i].a+1;
sort(w+1,w+1+n,cmp);CDQ(1,n,0);
ans+=sum;ans+=n*(n-1)*(n-2)/6; for(ll i=1;i<=n;i++)w[i].a=a[i].a,w[i].b=a[i].b;solve();
for(ll i=1;i<=n;i++)w[i].a=a[i].b,w[i].b=a[i].c;solve();
for(ll i=1;i<=n;i++)w[i].a=a[i].a,w[i].b=a[i].c;solve(); for(ll i=1;i<=n;i++)
w[i].a=a[i].a,w[i].b=a[i].b,w[i].c=a[i].c;
sort(w+1,w+1+n,cmp);
CDQ(1,n,1);
for(ll i=1;i<=n;i++)ans+=g[i]*(g[i]-1);
printf("%lld\n",ans);
}

YbtOJ#791-子集最值【三维偏序】的更多相关文章

  1. NEUOJ 1702 撩妹全靠魅力值 (三维偏序)

    题目链接:http://acm.neu.edu.cn/hustoj/problem.php?id=1702 题目大意:就是问每个人三个属性同时不低于另外几个人....人不分先后 经典的三维偏序问题 解 ...

  2. NEUOJ 1702:撩妹全靠魅力值(CDQ分治三维偏序)

    http://acm.neu.edu.cn/hustoj/problem.php?id=1702 思路:三维偏序模板题,用CDQ分治+树状数组或者树套树.对于三元组(x,y,z),先对x进行排序,然后 ...

  3. BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

  4. cdq分治解决三维偏序

    问题背景 在三维坐标系中有n个点,坐标为(xi,yi,zi). 定义一个点A比一个点B小,当且仅当xA<=xB,yA<=yB,zA<=zB.问对于每个点,有多少个点比它小.(n< ...

  5. P3810 【模板】三维偏序(陌上花开)

    P3810 [模板]三维偏序(陌上花开) cdq分治+树状数组 三维偏序模板题 前两维用cdq分治,第三维用树状数组进行维护 就像用树状数组搞逆序对那样做--->存权值的出现次数 attenti ...

  6. Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治

    Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治 题面 \(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\).定义一个元素的 ...

  7. 【算法学习】【洛谷】cdq分治 & P3810 三维偏序

    cdq是何许人也?请参看这篇:https://wenku.baidu.com/view/3b913556fd0a79563d1e7245.html. 在这篇论文中,cdq提出了对修改/询问型问题(Mo ...

  8. HDU 5517 【二维树状数组///三维偏序问题】

    题目链接:[http://acm.split.hdu.edu.cn/showproblem.php?pid=5517] 题意:定义multi_set A<a , d>,B<c , d ...

  9. BZOJ3262:陌上花开 & 洛谷3810:三维偏序——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3262 https://www.luogu.org/problemnew/show/3810 Desc ...

随机推荐

  1. Linux 安装配置 NET模式网络环境配置

    1.下载linux:发行版 Ubuntu  REdHat centos Debain Fedora,SUSE,OpenSUSEcentos 6.xcentos 7.x在虚拟机(VmWare)上 安装l ...

  2. LeetCode42. 接雨水(java)

    42.接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水. 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种 ...

  3. netty系列之:自建客户端和HTTP服务器交互

    目录 简介 使用客户端构建请求 accept-encoding server解析HTTP请求 总结 简介 上一篇文章,我们搭建了一个支持中文的HTTP服务器,并且能够从浏览器访问,并获取到相应的结果. ...

  4. 新东方APP技术团队建设

    作者:张建鑫, 曾任IBM高级软件架构师, 滴滴高级技术专家, 现任新东方集团高级技术总监 2019年注定是不平凡的一年,在俞敏洪老师对科技条线的密切关注下, 吴强老师亲自操盘了对产品技术条线的改革, ...

  5. Spring Boot +Vue 项目实战笔记(一):使用 CLI 搭建 Vue.js 项目

    前言 从这篇文章开始,就进入真正的实践了. 在前端项目开发中,我们可以根据实际情况不同程度地使用 Vue.利用 Vue CLI(或写成 vue-cli,即 Vue 脚手架)搭建出来的项目,是最能体现 ...

  6. 使用 & 进行高效率取余运算

    Java的HashMap源码中用到的(n-1)&hash这样的运算,这是一种高效的求余数的方法 结论:假设被除数是x,对于除数是2n的取余操作x%2n,都可以写成x&(2n-1),位运 ...

  7. SpringBoot笔记(1)

    一.Spring能做什么 微服务 响应式开发 分布式云开发 web开发 无服务开发(云) 批处理业务等 二.SpringBoot作用 能快速创建出生产级别的Spring应用 SpringBoot是整合 ...

  8. Servlet学习笔记(二)之Servlet路径映射配置、Servlet接口、ServletConfig、ServletContext

    Servlet路径映射配置 要使Servlet对象正常的运行,需要进行适当的配置,以告诉Web容器哪个请求调用哪个Servlet对象处理,对Servlet起到一个注册的作用.Servlet的配置信息包 ...

  9. 如何在RHEL7或CentOS 7系统下修改网卡名称(亲测有效~!)

    亲测有效的更改RHEL7或CentOS 7的网卡名称的方法, 按照以下4步来操作就可以实现! Step 1 :网卡配置文件名称重命名为eth0[root@localhost ~]# ifconfige ...

  10. MySQL——优化

    MySQL数据库优化: 1.优化角度 安全: 数据可持续性 性能: 数据的高性能访问 2.优化范围(优化顺序---->) (1)存储.主机和操作系统: 主机架构稳定性 I/O规划及配置 swap ...